
D
R

A
FT

CS49: Data Stream Algorithms

Lecture Notes, Fall 2011

Amit Chakrabarti

Dartmouth College

Latest Update: October 14, 2014

D
R

A
FT

Acknowledgements

These lecture notes began as rough scribe notes for a Fall 2009 offering of the course “Data

Stream Algorithms” at Dartmouth College. The initial scribe notes were prepared mostly

by students enrolled in the course in 2009. Subsequently, during a Fall 2011 offering of the

course, I edited the notes heavily, bringing them into presentable form, with the aim being to

create a resource for students and other teachers of this material.

I would like to acknowledge the initial effort by the 2009 students that got these notes

started: Radhika Bhasin, Andrew Cherne, Robin Chhetri, Joe Cooley, Jon Denning, Alina Dja-

mankulova, Ryan Kingston, Ranganath Kondapally, Adrian Kostrubiak, Konstantin Kutzkow,

Aarathi Prasad, Priya Natarajan, and Zhenghui Wang.

D
R

A
FT

Contents

0 Preliminaries: The Data Stream Model 5

0.1 The Basic Setup . 5

0.2 The Quality of an Algorithm’s Answer . 5

0.3 Variations of the Basic Setup . 6

1 Finding Frequent Items Deterministically 7

1.1 The Problem . 7

1.2 The Misra-Gries Algorithm . 7

1.3 Analysis of the Algorithm . 7

2 Estimating the Number of Distinct Elements 9

2.1 The Problem . 9

2.2 The Algorithm . 9

2.3 The Quality of the Algorithm’s Estimate . 10

2.4 The Median Trick . 10

3 A Better Estimate for Distinct Elements 12

3.1 The Problem . 12

3.2 The BJKST Algorithm . 12

3.3 Analysis: Space Complexity . 13

3.4 Analysis: The Quality of the Estimate . 13

3.5 Optimality . 14

4 Finding Frequent Items via Sketching 16

4.1 The Problem . 16

4.2 Sketches and Linear Sketches . 16

4.3 The Count Sketch . 17

4.3.1 The Quality of the Basic Sketch’s Estimate . 17

4.3.2 The Final Sketch . 18

4.4 The Count-Min Sketch . 19

2

D
R

A
FT

CONTENTS
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

4.4.1 The Quality of the Algorithm’s Estimate . 19

4.5 Comparison of Frequency Estimation Methods . 20

5 Estimating Frequency Moments 22

5.1 Background and Motivation . 22

5.2 The AMS Estimator for Fk . 23

5.3 Analysis of the Basic Estimator . 23

5.4 The Median-of-Means Improvement . 25

6 The Tug-of-War Sketch 26

6.1 The Basic Sketch . 26

6.1.1 The Quality of the Estimate . 26

6.2 The Final Sketch . 27

6.2.1 A Geometric Interpretation . 27

7 Estimating Norms Using Stable Distributions 29

7.1 A Different `2 Algorithm . 29

7.2 Stable Distributions . 30

7.3 The Median of a Distribution and its Estimation . 31

7.4 The Accuracy of the Estimate . 31

7.5 Annoying Technical Details . 32

7.5.1 An Open Question . 33

8 Estimating Norms via Precision Sampling 34

8.1 The Basic Idea . 34

9 Finding the Median 35

9.1 The Problem . 35

9.2 Munro-Paterson Algorithm (1980) . 36

10 Approximate Selection 39

10.1 Two approaches . 39

10.2 Greenwald - Khanna Algorithm . 40

10.3 Guha-McGregor Algorithm . 41

11 Geometric Streams and Coresets 42

11.1 Extent Measures and Minimum Enclosing Ball . 42

11.2 Coresets and Their Properties . 42

11.3 A Coreset for MEB . 43

11.4 Data Stream Algorithm for Coreset Construction . 44

3

D
R

A
FT

CONTENTS
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

12 Metric Streams and Clustering 46

12.1 Metric Spaces . 46

12.2 The Cost of a Clustering: Summarization Costs . 47

12.3 The Doubling Algorithm . 47

12.4 Metric Costs and Threshold Algorithms . 49

12.5 Guha’s Algorithm . 49

12.5.1 Space Bounds . 50

12.5.2 The Quality of the Summary . 50

13 Graph Streams: Basic Algorithms 52

13.1 Streams that Describe Graphs . 52

13.2 The Connectedness Problem . 52

13.3 The Bipartiteness Problem . 53

13.4 Shortest Paths and Distance Estimation via Spanners . 54

13.4.1 The Size of a Spanner: High-Girth Graphs . 54

14 Finding Maximum Matchings and Counting Triangles 56

14.1 The Problems . 56

14.2 Maximum Cardinality Matching . 56

14.3 Triangle Counting: . 59

15 Communication Complexity 61

15.1 Introduction to Communication Complexity . 61

15.1.1 EQUALITY problem . 61

15.2 Communication complexity in Streaming Algorithms . 63

15.2.1 INDEX problem . 63

16 Reductions 65

17 Set Disjointness and Multi-Pass Lower Bounds 68

17.1 Communication Complexity of DISJ . 68

17.2 ST-Connectivity . 68

17.3 Perfect Matching Problem . 69

17.4 Multiparty Set Disjointness (DISJn;t) . 69

4

D
R

A
FTLecture 0

Preliminaries: The Data Stream Model

0.1 The Basic Setup

In this course, we shall concerned with algorithms that compute some function of a massively long input stream � .

In the most basic model (which we shall call the vanilla streaming model), this is formalized as a sequence � D
ha1; a2; : : : ; ami, where the elements of the sequence (called tokens) are drawn from the universe Œn� WD f1; 2; : : : ; ng.
Note the two important size parameters: the stream length,m, and the universe size, n. If you read the literature in the

area, you will notice that some authors interchange these two symbols. In this course, we shall consistently use m and

n as we have just defined them.

Our central goal will be to process the input stream using a small amount of space s, i.e., to use s bits of random-

access working memory. Since m and n are to be thought of as “huge,” we want to make s much smaller than these;

specifically, we want s to be sublinear in both m and n. In symbols, we want

s D o .minfm; ng/ :

The holy grail is to achieve

s D O.logmC logn/ ;

because this amount of space is what we need to store a constant number of tokens from the stream and a constant

number of counters that can count up to the length of the stream. Sometimes we can only come close and achieve a

space bound of the form s D polylog.minfm; ng/, where f .n/ D polylog.g.n// means that there exists a constant

c > 0 such that f .n/ D O..logg.n//c/.

The reason for calling the input a stream is that we are only allowed to access the input in “streaming fashion,”

i.e., we do not have random access to the tokens. We can only scan the sequence in the given order. We do consider

algorithms that make p passes over the stream, for some “small” integer p, keeping in mind that the holy grail is to

achieve p D 1. As we shall see, in our first few algorithms, we will be able to do quite a bit in just one pass.

0.2 The Quality of an Algorithm’s Answer

The function we wish to compute — �.�/, say — will usually be real-valued. We shall typically seek to compute only

an estimate or approximation of the true value of �.�/, because many basic functions can provably not be computed

exactly using sublinear space. For the same reason, we shall often allow randomized algorithms than may err with

some small, but controllable, probability. This motivates the following basic definition.

Definition 0.2.1. Let A.�/ denote the output of a randomized streaming algorithm A on input � ; note that this is a

random variable. Let � be the function that A is supposed to compute. We say that the algorithm ."; ı/-approximates

5

D
R

A
FT

LECTURE 0. PRELIMINARIES: THE DATA STREAM MODEL
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

� if we have

Pr

�ˇ̌
ˇ̌A.�/
�.�/

� 1
ˇ̌
ˇ̌ > "

�
� ı :

Notice that the above definition insists on a multiplicative approximation. This is sometimes too strong a condition

when the value of �.�/ can be close to, or equal to, zero. Therefore, for some problems, we might instead seek an

additive approximation, as defined below.

Definition 0.2.2. In the above setup, the algorithm A is said to ."; ı/-additively-approximate � if we have

Pr ŒjA.�/ � �.�/j > "� � ı :

We have mentioned that certain things are provably impossible in sublinear space. Later in the course, we shall

study how to prove such impossibility results. Such impossibility results, also called lower bounds, are a rich field of

study in their own right.

0.3 Variations of the Basic Setup

Quite often, the function we are interested in computing is some statistical property of the multiset of items in the input

stream � . This multiset can be represented by a frequency vector f D .f1; f2; : : : ; fn/, where

fj D jfi W ai D j gj D number of occurrences of j in � :

In other words, � implicitly defines this vector f, and we are then interested in computing some function of the form

ˆ.f/. While processing the stream, when we scan a token j 2 Œn�, the effect is to increment the frequency fj . Thus,

� can be thought of as a sequence of update instructions, updating the vector f.

With this in mind, it is interesting to consider more general updates to f: for instance, what if items could both

“arrive” and “depart” from our multiset, i.e., if the frequencies fj could be both incremented and decremented, and

by variable amounts? This leads us to the turnstile model, in which the tokens in � belong to Œn� � f�L; : : : ; Lg,
interpreted as follows:

Upon receiving token ai D .j; c/ ; update fj fj C c :
Naturally, the vector f is assumed to start out at 0. In this generalized model, it is natural to change the role of the

parameter m: instead of the stream’s length, it will denote the maximum number of items in the multiset at any point

of time. More formally, we require that, at all times, we have

kfk1 D jf1j C � � � C jfnj � m :

A special case of the turnstile model, that is sometimes important to consider, is the strict turnstile model, in which

we assume that f � 0 at all times. A further special case is the cash register model, where we only allow positive

updates: i.e., we require that every update .j; c/ have c > 0.

6

D
R

A
FTLecture 1

Finding Frequent Items Deterministically

1.1 The Problem

We are in the vanilla streaming model. We have a stream � D ha1; : : : ; ani, with each ai 2 Œn�, and this implicitly

defines a frequency vector f D .f1; : : : ; fn/. Note that f1 C � � � C fn D m.

In the MAJORITY problem, our task is as follows: if 9 j W fj > m=2, then output j , otherwise, output “?”.

This can be generalized to the FREQUENT problem, with parameter k, as follows: output the set fj W fj > m=kg.
In this lecture, we shall limit ourselves to deterministic algorithms for this problem. If we further limit ourselves

to one-pass algorithms, even the simpler problem, MAJORITY, provably requires �.minfm; ng/ space. However, we

shall soon give a one-pass algorithm — the Misra-Gries Algorithm [MG82] — that solves the related problem of

estimating the frequencies fj . As we shall see,

1. the properties of Misra-Gries are interesting in and of themselves, and

2. it is easy to extend Misra-Gries, using a second pass, to then solve the FREQUENT problem.

Thus, we now turn to the FREQUENCY-ESTIMATION problem. The task is to process � to produce a data structure

that can provide an estimate Ofa for the frequency fa of a given token a 2 Œn�. Note that a is given to us only after we

have processed � .

1.2 The Misra-Gries Algorithm

As with all one-pass data stream algorithms, we shall have an initialization section, executed before we see the stream,

a processing section, executed each time we see a token, and an output section, where we answer question(s) about

the stream, perhaps in response to a given query.

This algorithm uses a parameter k that controls the quality of the answers it gives. (Note: to solve the FREQUENT

problem with parameter k, we shall run the Misra-Gries algorithm with parameter k.) It maintains an associative array,

A, whose keys are tokens seen in the stream, and whose values are counters associated with these tokens. We keep at

most k � 1 counters at any time.

1.3 Analysis of the Algorithm

To process each token quickly, we could maintain the associative array A using a balanced binary search tree. Each

key requires dlogne bits to store and each value requires at most dlogme bits. Since there are at most k � 1 key/value

7

D
R

A
FT

LECTURE 1. FINDING FREQUENT ITEMS DETERMINISTICALLY
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

Initialize : A (empty associative array) ;

Process j :

if j 2 keys.A/ then1

AŒj � AŒj �C 1 ;2

else if jkeys.A/j < k � 1 then3

AŒj � 1 ;4

else5

foreach ` 2 keys.A/ do6

AŒ`� AŒ`� � 1 ;7

if AŒ`� D 0 then remove ` from A ;8

Output : On query a, if a 2 keys.A/, then report Ofa D AŒa�, else report Ofa D 0 ;

pairs in A at any time, the total space required is O.k.logmC logn//.

Now consider the quality of the algorithm’s output. Let us pretend that A consists of n key/value pairs, with

AŒj � D 0 whenever j is not actually stored in A by the algorithm. Notice that the counter AŒj � is incremented only

when we process an occurrence of j in the stream. Thus, Ofj � fj . On the other hand, whenever AŒj � is decremented

(in lines 7-8, we pretend that AŒj � is incremented from 0 to 1, and then immediately decremented back to 0), we

also decrement k � 1 other counters, corresponding to distinct tokens in the stream. Thus, each decrement of AŒj � is

“witnessed” by a collection of k distinct tokens (one of which is a j itself) from the stream. Since the stream consists

of m tokens, there can be at most m=k such decrements. Therefore, Ofj � fj �m=k. Putting these together we have

the following theorem.

Theorem 1.3.1. The Misra-Gries algorithm with parameter k uses one pass and O.k.logmC logn// bits of space,

and provides, for any token j , an estimate Ofj satisfying

fj �
m

k
� Ofj � fj :

Using this algorithm, we can now easily solve the FREQUENT problem in one additional pass. By the above

theorem, if some token j has fj > m=k, then its corresponding counter AŒj � will be positive at the end of the Misra-

Gries pass over the stream, i.e., j will be in keys.A/. Thus, we can make a second pass over the input stream, counting

exactly the frequencies fj for all j 2 keys.A/, and then output the desired set of items.

Exercises

1-1 Let Om be the sum of all counters maintained by the Misra-Gries algorithm after it has processed an input stream,

i.e., Om DP`2keys.A/ AŒ`�. Prove that the bound in Theorem 1.3.1 can be sharpened to

fj �
m � Om
k

� Ofj � fj : (1.1)

1-2 Suppose we have run the (one-pass) Misra-Gries algorithm on two streams �1 and �2, thereby obtaining a

summary for each stream consisting of k counters. Consider the following algorithm for merging these two

summaries to produce a single k-counter summary.

1: Combine the two sets of counters, adding up counts for any common items.

2: If more than k counters remain:

2.1: c value of .k C 1/th counter, based on increasing order of value.

2.2: Reduce each counter by c and delete all keys with non-positive counters.

Prove that the resulting summary is good for the combined stream �1 ı �2 (here “ı” denotes concatenation of

streams) in the sense that frequency estimates obtained from it satisfy the bounds given in Eq. (1.1).

8

D
R

A
FTLecture 2

Estimating the Number of Distinct Elements

2.1 The Problem

As in the last lecture, we are in the vanilla streaming model. We have a stream � D ha1; : : : ; ani, with each ai 2 Œn�,
and this implicitly defines a frequency vector f D .f1; : : : ; fn/. Let d D jfj W fj > 0gj be the number of distinct

elements that appear in � .

In the DISTINCT-ELEMENTS problem, our task is to output an ."; ı/-approximation (as in Definition 0.2.1) to d .

It is provably impossible to solve this problem in sublinear space if one is restricted to either deterministic algo-

rithms (i.e., ı D 0), or exact algorithms (i.e., " D 0). Thus, we shall seek a randomized approximation algorithm. In

this lecture, we give a simple algorithm for this problem that has interesting, but not optimal, quality guarantees. The

idea behind the algorithm is originally due to Flajolet and Martin [FM85], and we give a slightly modified presentation,

due to Alon, Matias and Szegedy [AMS99]. We shall refer to this as the “AMS Algorithm” for DISTINCT-ELEMENTS;

note that there are two other (perhaps more famous) algorithms from the same paper that are also referred to as “AMS

Algorithm,” but those are for other problems.

2.2 The Algorithm

For an integer p > 0, let zeros.p/ denote the number of zeros that the binary representation of p ends with. Formally,

zeros.p/ D maxfi W 2i divides pg :
Our algorithm’s key ingredient is a 2-universal hash family, a very important concept that will come up repeatedly. If

you are unfamiliar with the concept, working through Exercises 2-1 and 2-2 is strongly recommended. Once we have

this key ingredient, our algorithm is very simple.

Initialize :

Choose a random hash function h W Œn�! Œn� from a 2-universal family ;1

z 0 ;2

Process j :

if zeros.h.j // > z then z zeros.h.j // ;3

Output : 2zC 1
2

The basic intuition here is that we expect 1 out of the d distinct tokens to hit zeros.h.j // � logd , and we don’t

expect any tokens to hit zeros.h.j // � logd . Thus, the maximum value of zeros.h.j // over the stream — which is

what we maintain in z — should give us a good approximation to logd . We now analyze this.

9

D
R

A
FT

LECTURE 2. ESTIMATING THE NUMBER OF DISTINCT ELEMENTS
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

2.3 The Quality of the Algorithm’s Estimate

Formally, for each j 2 Œn� and each integer r � 0, letXr;j be an indicator random variable for the event “zeros.h.j // �
r ,” and let Yr D

P
j W fj >0Xr;j . Let t denote the value of z when the algorithm finishes processing the stream. Clearly,

Yr > 0 ” t � r : (2.1)

We can restate the above fact as follows (this will be useful later):

Yr D 0 ” t � r � 1 : (2.2)

Since h.j / is uniformly distributed over the .logn/-bit strings, we have

EŒXr;j � D PrŒzeros.h.j // � r� D PrŒ2r divides h.j /� D 1

2r
:

We now estimate the expectation and variance of Yr as follows. The first step of Eq. (2.3) below uses the pairwise

independence of the random variables Yr , which follows from the 2-universality of the hash family from which h is

drawn.

EŒYr � D
X

j W fj >0

EŒXr;j � D
d

2r
:

VarŒYr � D
X

j W fj >0

VarŒXr;j � �
X

j W fj >0

EŒX2
r;j � D

X

j W fj >0

EŒXr;j � D
d

2r
: (2.3)

Thus, using Markov’s and Chebyshev’s inequalities respectively, we have

PrŒYr > 0� D PrŒYr � 1� �
EŒYr �

1
D d

2r
; and (2.4)

PrŒYr D 0� D Pr ŒjYr � EŒYr �j � d=2r � � VarŒYr �

.d=2r/2
� 2r

d
: (2.5)

Let Od be the estimate of d that the algorithm outputs. Then Od D 2tC 1
2 . Let a be the smallest integer such that

2aC 1
2 � 3d . Using Eqs. (2.1) and (2.4), we have

Pr
h
Od � 3d

i
D PrŒt � a� D PrŒYa > 0� �

d

2a
�
p
2

3
:

Similarly, let b be the largest integer such that 2bC 1
2 � d=3. Using Eqs. (2.2) and (2.5), we have

Pr
h
Od � d=3

i
D PrŒt � b� D PrŒYbC1 D 0� �

2bC1

d
�
p
2

3
:

These guarantees are weak in two ways. Firstly, the estimate Od is only of the “same order of magnitude” as d , and

is not an arbitrarily good approximation. Secondly, these failure probabilities above are only bounded by the rather

large
p
2=3 � 47%. Of course, we could make the probabilities smaller by replacing the constant “3” above with

a larger constant. But a better idea, that does not further degrade the quality of the estimate Od , is to use a standard

“median trick” which will come up again and again.

2.4 The Median Trick

Imagine running k copies of this algorithm in parallel, using mutually independent random hash functions, and out-

putting the median of the k answers. If this median exceeds 3d , then at least k=2 of the individual answers must

10

D
R

A
FT

LECTURE 2. ESTIMATING THE NUMBER OF DISTINCT ELEMENTS
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

exceed 3d , whereas we only expect k
p
2=3 of them to exceed 3d . By a standard Chernoff bound, this event has

probability 2��.k/. Similarly, the probability that the median is below d=3 is also 2��.k/.

Choosing k D ‚.log.1=ı//, we can make the sum of these two probabilities work out to at most ı. This gives us

an .O.1/; ı/-approximation to d . Later, we shall give a different algorithm that will provide an ."; ı/-approximation

with "! 0.

The original algorithm requires O.logn/ bits to store (and compute) a suitable hash function, and O.log logn/

more bits to store z. Therefore, the space used by this final algorithm is O.log.1=ı/ � logn/. When we reattack this

problem with a new algorithm, we will also improve this space bound.

Exercises

These exercises are designed to get you familiar with the very important concept of a 2-universal hash family, as well

as give you constructive examples of such families.

Let X and Y be finite sets and let Y X denote the set of all functions fromX to Y . We will think of these functions

as “hash” functions. [The term “hash function” has no formal meaning; strictly speaking, one should say “family of

hash functions” or “hash family” as we do here.] A family H � Y X is said to be 2-universal if the following property

holds, with h 2R H picked uniformly at random:

8 x; x0 2 X 8 y; y0 2 Y
�
x ¤ x0) Pr

h

�
h.x/ D y ^ h.x0/ D y0

�
D 1

jY j2
�
:

We shall give two examples of 2-universal hash families from the set X D f0; 1gn to the set Y D f0; 1gk (with k � n).

2-1 Treat the elements of X and Y as column vectors with 0/1 entries. For a matrix A 2 f0; 1gk�n and vector

b 2 f0; 1gk, define the function hA;b W X ! Y by hA;b.x/ D Ax C b, where all additions and multiplications

are performed mod 2.

Prove that the family of functions H D fhA;b W A 2 f0; 1gk�n; b 2 f0; 1gkg is 2-universal.

2-2 Identify X with the finite field GF.2n/ using an arbitrary bijection—truly arbitrary: e.g., the bijection need not

map the string 0n to the zero element of GF.2n/. For elements a; b 2 X , define the function ga;b W X ! Y as

follows:

ga;b.x/ D rightmost k bits of fa;b.x/ ; where

fa;b.x/ D ax C b ; with addition and multiplication performed in GF.2n/ :

Prove that the family of functions G D fga;b W a; b 2 GF.2n/g is 2-universal. Is the family G better or worse

than H in any sense? Why?

11

D
R

A
FTLecture 3

A Better Estimate for Distinct Elements

3.1 The Problem

We revisit the DISTINCT-ELEMENTS problem from last time, giving a better solution, in terms of both approximation

guarantee and space usage; we also seek good time complexity. Thus, we are again in the vanilla streaming model.

We have a stream � D ha1; a2; a3; : : : ; ami, with each ai 2 Œn�, and this implicitly defines a frequency vector

f D .f1; : : : ; fn/. Let d D jfj W fj > 0gj be the number of distinct elements that appear in � . We want an

."; ı/-approximation (as in Definition 0.2.1) to d .

3.2 The BJKST Algorithm

In this section we present the algorithm dubbed BJKST, after the names of the authors: Bar-Yossef, Jayram, Kumar,

Sivakumar and Trevisan [BJKC04]. The original paper in which this algorithm is presented actually gives three

algorithms, the third (and, in a sense, “best”) of which we are presenting. The “zeros” notation below is the same as in

Section 2.2. The values b and c are universal constants that will be determined later, based on the desired guarantees

on the algorithm’s estimate.

Initialize :

Choose a random hash function h W Œn�! Œn� from a 2-universal family ;1

Choose a random hash function g W Œn�! Œb"�4 log2 n� from a 2-universal family ;2

z 0 ;3

B ¿ ;4

Process j :

if zeros.h.j // � z then5

B B [f.g.j /; zeros.h.j //g ;6

while jBj � c="2 do7

z z C 1 ;8

shrink B by removing all .˛; ˇ/ with ˇ < z ;9

Output : jBj2z ;

Intuitively, this algorithm is a refined version of the AMS Algorithm from Section 2.2. This time, rather than simply

tracking the maximum value of zeros.h.j // in the stream, we try to determine the size of the bucket B consisting of

all tokens j with zeros.h.j // � z. Of the d distinct tokens in the stream, we expect d=2z to fall into this bucket.

Therefore jBj2z should be a good estimate for d .

12

D
R

A
FT

LECTURE 3. A BETTER ESTIMATE FOR DISTINCT ELEMENTS
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

We want B to be small so that we can store enough information (remember, we are trying to save space) to track

jBj accurately. At the same time, we want B to be large so that the estimate we produce is accurate enough. It turns

out that letting B grow to about O.1="2/ in size is the right tradeoff. Finally, as a space-saving trick, the algorithm

does not store the actual tokens in B but only their hash values under g, together with the value of zeros.h.j // that is

needed to remove the appropriate elements from B when B must be shrunk.

We now analyze the algorithm in detail.

3.3 Analysis: Space Complexity

We assume 1="2 D o.m/: otherwise, there is no point to this algorithm! The algorithm has to store h; g; z; and B .

Clearly, h and B dominate the space requirement. Using the finite-field-arithmetic hash family from Exercise 2-2 for

our hash functions, we see that h requiresO.logn/ bits of storage. The bucketB has its size capped atO.1="2/. Each

tuple .˛; ˇ/ in the bucket requires log.b"�4 log2 n/ D O.log.1="/C log logn/ bits to store the hash value ˛, which

dominates the dlog logne bits required to store the number of zeros ˇ.

Overall, this leads to a space requirement of O.lognC .1="2/.log.1="/C log logn//.

3.4 Analysis: The Quality of the Estimate

The entire analysis proceeds under the assumption that storing hash values (under g) in B , instead of the tokens

themselves, does not change jBj. This is true whenever g does not have collisions on the set of tokens to which it is

applied. By choosing the constant b large enough, we can ensure that the probability of this happening is at most 1=6,

for each choice of h (you are asked to flesh this out in Exercise 3-1). Thus, making this assumption adds at most 1=6

to the error probability. We now analyze the rest of the error, under this no-collision assumption.

The basic setup is the same as in Section 2.3. For each j 2 Œn� and each integer r � 0, let Xr;j be an indicator

random variable for the event “zeros.h.j // � r ,” and let Yr D
P

j W fj >0Xr;j . Let t denote the value of z when the

algorithm finishes processing the stream, and let Od denote the estimate output by the algorithm. Then we have

Yt D value of jBj when algorithm finishes;

) Od D Yt2
t :

Proceeding as in Section 2.3, we obtain

EŒYr � D
d

2r
I VarŒYr � �

d

2r
: (3.1)

Notice that if t D 0, then the algorithm never incremented z, which means that d < c="2 and Od D jBj D d . In

short, the algorithm computes d exactly in this case.

Otherwise (t � 1), we say that a FAIL event occurs if Od is not a .1˙ "/-approximation to d . That is,

FAIL ” jYt2
t � d j � "d ”

ˇ̌
ˇ̌Yt �

d

2t

ˇ̌
ˇ̌ � "d

2t
:

We can estimate this probability by summing over all possible values r 2 f1; 2; : : : ; logng of t . For the small

values of r , a failure will be unlikely when t D r , because failure requires a large deviation of Yr from its mean. For

the large values of r , simply having t D r is unlikely. This is the intuition for splitting the summation into two parts

below. We need to choose the threshold that separates “small” values of r from “large” ones and we do it as follows.

Let s be the unique integer such that
12

"2
� d

2s
<
24

"2
: (3.2)

13

D
R

A
FT

LECTURE 3. A BETTER ESTIMATE FOR DISTINCT ELEMENTS
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

Then we calculate

PrŒFAIL� D
log nX

rD1

Pr

� ˇ̌
ˇ̌Yr �

d

2r

ˇ̌
ˇ̌ � "d

2r

^
t D r

�

�
s�1X

rD1

Pr

� ˇ̌
ˇ̌Yr �

d

2r

ˇ̌
ˇ̌ � "d

2r

�
C

log nX

rDs

PrŒt D r�

D
s�1X

rD1

Pr Œ jYr � EŒYr �j � "d=2r �C PrŒt � s� (by (3.1))

D
s�1X

rD1

Pr Œ jYr � EŒYr �j � "d=2r �C PrŒYs�1 � c="2� : (3.3)

Now we bound the first term in (3.3) using Chebyshev’s inequality and the second term using Markov’s inequality.

Then we use (3.1) to compute

PrŒFAIL� �
s�1X

rD1

VarŒYr �

."d=2r/2
C EŒYs�1�

c="2

�
s�1X

rD1

2r

"2d
C "2d

c2s�1

� 2s

"2d
C 2"2d

c2s

� 1

"2
� "

2

12
C 2"2

c
� 24
"2

(by (3.2))

� 1

6
;

where the final bound is achieved by choosing a large enough constant c.

Recalling that we had started with a no-collision assumption for g, the final probability of error is at most 1=6C
1=6 D 1=3. Thus, the above algorithm ."; 1

3
/-approximates d . As before, by using the median trick, we can improve

this to an ."; ı/-approximation for any 0 < ı � 1=3, at a cost of an O.log.1=ı//-factor increase in the space usage.

3.5 Optimality

This algorithm is optimal in a fairly strong sense. Later in this course, when we study lower bounds, we shall show

both an �.logn/ and a an �.1="2/ bound on the space required by an algorithm that ."; 1
3
/-approximates the number

of distinct elements. In fact, an even stronger lower bound that simultaneously involves n and " is known (ref?).

Exercises

3-1 Let H � Y X be a 2-universal hash family, with jY j D cM 2, for some constant c > 0. Suppose we use a

random function h 2R H to hash a stream � of elements of X , and suppose that � contains at most M distinct

elements. Prove that the probability of a collision (i.e., the event that two distinct elements of � hash to the same

location) is at most 1=.2c/.

3-2 Recall that we said in class that the buffer B in the BJKST Algorithm for DISTINCT-ELEMENTS can be imple-

mented cleverly by not directly storing the elements of the input stream in B , but instead, storing the hash values

of these elements under a secondary hash function whose range is of size cM 2, for a suitable M .

14

D
R

A
FT

LECTURE 3. A BETTER ESTIMATE FOR DISTINCT ELEMENTS
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

Using the above result, flesh out the details of this clever implementation. (One important detail that you must

describe: how do you implement the buffer-shrinking step?) Plug in c D 3, for a target collision probability

bound of 1=.2c/ D 1=6, and figure out what M should be. Compute the resulting upper bound on the space

usage of the algorithm. It should work out to

O

�
lognC 1

"2

�
log

1

"
C log logn

��
:

15

D
R

A
FTLecture 4

Finding Frequent Items via Sketching

4.1 The Problem

We return to the FREQUENT problem that we studied in Lecture 1: given a parameter k, we seek the set of tokens with

frequency> m=k. The Misra-Gries algorithm, in a single pass, gave us enough information to solve FREQUENT with

a second pass: namely, in one pass it computed a data structure which could be queried at any token j 2 Œn� to obtain

a sufficiently accurate estimate Ofj to its frequency fj . We shall now give two other one-pass algorithms for this same

problem, that we can call FREQUENCY-ESTIMATION.

4.2 Sketches and Linear Sketches

Let MG.�/ denote the data structure computed by Misra-Gries upon processing the stream � . One drawback of this

data structure is that there is no general way to compute MG.�1 ı �2/ from MG.�1/ and MG.�2/, where “ı” denotes

concatenation of streams. Clearly, it would be desirable to be able to combine two data structures in this way, and

when it can be done, such a data structure is called a sketch.

Definition 4.2.1. A data structure DS.�/ computed in streaming fashion by processing a stream � is called a sketch if

there is a space-efficient combining algorithm COMB such that, for every two streams �1 and �2, we have

COMB.DS.�1/;DS.�2// D DS.�1 ı �2/ :

Each of the algorithms of this lecture has the nice property that it computes a sketch of the input stream in the

above sense. Since these algorithms are computing functions of the frequency vector f.�/ determined by � , their

sketches will naturally be functions of f.�/; in fact, they will be linear functions. That’s special enough to call out in

another definition.

Definition 4.2.2. A sketching algorithm “sk” is called a linear sketch if, for each stream � over a token universe Œn�,

sk.�/ takes values in a vector space of dimension ` D `.n/, and sk.�/ is a linear function of f.�/. In this case, ` is

called the dimension of the linear sketch.

Notice that the combining algorithm for linear sketches is to simply add the sketches (in the appropriate vector

space).

Besides not producing a sketch, Misra-Gries also has the drawback that it does not seem to extend to the turnstile

(or even strict turnstile) model. But the algorithms in this lecture do, because a data stream algorithm based on a linear

sketch naturally generalizes from the vanilla to the turnstile model. If the arrival of a token j in the vanilla model

causes us to add a vector vj to the sketch, then an update .j; c/ in the turnstile model is handled by adding cvj to the

sketch: this handles both cases c � 0 and c < 0.

16

D
R

A
FT

LECTURE 4. FINDING FREQUENT ITEMS VIA SKETCHING
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

4.3 The Count Sketch

We now describe the first of our sketching algorithms, called “Count Sketch”, which was introduced by Charikar,

Chen and Farach-Colton [CCFC04]. We start with a basic sketch that already has most of the required ideas in it. This

sketch takes an accuracy parameter " which should be thought of as small and positive.

Initialize :

C Œ1 : : : k� E0, where k WD 3="2 ;1

Choose a random hash function h W Œn�! Œk� from a 2-universal family ;2

Choose a random hash function g W Œn�! f�1; 1g from a 2-universal family ;3

Process .j; c/:

C Œh.j /� C Œh.j /�C cg.j / ;4

Output :

On query a, report Ofa D g.a/C Œh.a/� ;5

The sketch computed by this algorithm is the array of counters C , which can be thought of as a vector in Z
k . Note

that for two such sketches to be combinable, they must be based on the same hash functions h and g.

4.3.1 The Quality of the Basic Sketch’s Estimate

Fix an arbitrary token a and consider the output X D Ofa on query a. For each token j 2 Œn�, let Yj be the indicator

for the event “h.j / D h.a/”. Examining the algorithm’s workings we see that a token j contributes to the counter

C Œh.a/� iff h.j / D h.a/, and the amount of the contribution is its frequency fj times the random sign g.j /. Thus,

X D g.a/

nX

j D1

fjg.j /Yj D fa C
X

j 2Œn�nfag

fjg.a/g.j /Yj :

Since g and h are independent, we have

EŒg.j /Yj � D EŒg.j /�EŒYj � D 0 � EŒYj � D 0 : (4.1)

Therefore, by linearity of expectation, we have

EŒX� D fa C
X

j 2Œn�nfag

fjg.a/EŒg.j /Yj � D fa : (4.2)

Thus, the output X D Ofa is an unbiased estimator for the desired frequency fa.

We still need to show that X is unlikely to deviate too much from its mean. For this, we analyze its variance. By

2-universality of the family from which h is drawn, we see that for each j 2 Œn� n fag, we have

EŒY 2
j � D EŒYj � D PrŒh.j / D h.a/� D 1

k
: (4.3)

Next, we use 2-universality of the family from which g is drawn, and independence of g and h, to conclude that for

all i; j 2 Œn� with i ¤ j , we have

EŒg.i/g.j /YiYj � D EŒg.i/�EŒg.j /�EŒYiYj � D 0 � 0 � EŒYiYj � D 0 : (4.4)

17

D
R

A
FT

LECTURE 4. FINDING FREQUENT ITEMS VIA SKETCHING
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

Thus, we calculate

VarŒX� D 0C g.a/2 Var

2
4 X

j 2Œn�nfag

fjg.j /Yj

3
5

D E

2
64

X

j 2Œn�nfag

f 2
j Y

2
j C

X

i;j 2Œn�nfag
i¤j

fifjg.i/g.j /YiYj

3
75 �

0
@ X

j 2Œn�nfag

fj EŒg.j /Yj �

1
A

2

D
X

j 2Œn�nfag

f 2
j

k
C 0 � 0 (by (4.3), (4.4), and (4.1))

D kfk
2
2 � f 2

a

k
; (4.5)

where f D f.�/ is the frequency distribution determined by � . From (4.2) and (4.5), using Chebyshev’s inequality, we

obtain

Pr

�
j Ofa � faj � "

q
kfk22 � f 2

a

�
D Pr

�
jX � EŒX�j � "

q
kfk22 � f 2

a

�

� VarŒX�

"2.kfk22 � f 2
a /

D 1

k"2
D 1

3
:

For j 2 Œn�, let us define f�j to be the .n � 1/-dimensional vector obtained by dropping the j th entry of f. Then

kf�j k22 D kfk22 � f 2
j . Therefore, we can rewrite the above statement in the following more memorable form.

Pr
h
j Ofa � faj � "kf�ak2

i
� 1

3
: (4.6)

4.3.2 The Final Sketch

The sketch that is commonly referred to as “Count Sketch” is in fact the sketch obtained by applying the median trick

(see Section 2.4) to the above basic sketch, bringing its probability of error down to ı, for a given small ı > 0. Thus,

the Count Sketch can be visualized as a two-dimensional array of counters, with each token in the stream causing

several counter updates. For the sake of completeness, we spell out this final algorithm in full below.

Initialize :

C Œ1 : : : t �Œ1 : : : k� E0, where k WD 3="2 and t WD O.log.1=ı// ;1

Choose t independent hash functions h1; : : : ht W Œn�! Œk�, each from a 2-universal family ;2

Choose t independent hash functions g1; : : : gt W Œn�! Œk�, each from a 2-universal family ;3

Process .j; c/:

for i D 1 to t do C Œi�Œhi .j /� C Œi�Œhi .j /�C cgi .j / ;4

Output :

On query a, report Ofa D median1�i�t gi .a/C Œi �Œhi .a/� ;5

As in Section 2.4, a standard Chernoff bound argument proves that this estimate Ofa satisfies

Pr
h
j Ofa � faj � "kf�ak2

i
� ı : (4.7)

With a suitable choice of hash family, we can store the hash functions above in O.t logn/ space. Each of the tk

counters in the sketch uses O.logm/ space. This gives us an overall space bound of O.t lognC tk logm/, which is

O

�
1

"2
log

1

ı
� .logmC logn/

�
:

18

D
R

A
FT

LECTURE 4. FINDING FREQUENT ITEMS VIA SKETCHING
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

4.4 The Count-Min Sketch

Another solution to FREQUENCY-ESTIMATION is the so-called “Count-Min Sketch”, which was introduced by Cor-

mode and Muthukrishnan [CM05]. As with the Count Sketch, this sketch too takes an accuracy parameter " and an

error probability parameter ı. And as before, the sketch consists of a two-dimensional t � k array of counters, which

are updated in a very similar manner, based on hash functions. The values of t and k are set, based on " and ı, as

shown below.

Initialize :

C Œ1 : : : t �Œ1 : : : k� E0, where k WD 2=" and t WD dlog.1=ı/e ;1

Choose t independent hash functions h1; : : : ht W Œn�! Œk�, each from a 2-universal family ;2

Process .j; c/:

for i D 1 to t do C Œi�Œhi .j /� C Œi�Œhi .j /�C c ;3

Output :

On query a, report Ofa D min1�i�t C Œi�Œhi .a/� ;4

Note how much simpler this algorithm is, as compared to Count Sketch! Also, note that its space usage is

O

�
1

"
log

1

ı
� .logmC logn/

�
;

which is better than that of Count Sketch by a 1=" factor. The place where Count-Min Sketch is weaker is in its

approximation guarantee, which we now analyze.

4.4.1 The Quality of the Algorithm’s Estimate

We focus on the case when each token .j; c/ in the stream satisfies c > 0, i.e., the cash register model. Clearly, in this

case, every counter C Œi�Œhi .a/�, corresponding to a token a, is an overestimate of fa. Thus, we always have

fa � Ofa ;

where Ofa is the estimate of fa output by the algorithm.

For a fixed a, we now analyze the excess in one such counter, say in C Œi�Œhi .a/�. Let the random variable Xi

denote this excess. For j 2 Œn� n fag, let Yi;j be the indicator of the event “hi .j / D hi .a/”. Notice that j makes a

contribution to the counter iff Yi;j D 1, and when it does contribute, it causes fj to be added to this counter. Thus,

Xi D
X

j 2Œn�nfag

fjYi;j :

By 2-universality of the family from which hi is drawn, we compute that EŒYi;j � D 1=k. Thus, by linearity of

expectation,

EŒXi � D
X

j 2Œn�nfag

fj

k
D kfk1 � fa

k
D kf�ak1

k
:

Since each fj � 0, we have Xi � 0, and we can apply Markov’s inequality to get

PrŒXi � "kf�ak1� �
kf�ak1
k"kf�ak1

D 1

2
;

by our choice of k.

19

D
R

A
FT

LECTURE 4. FINDING FREQUENT ITEMS VIA SKETCHING
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

The above probability is for one counter. We have t such counters, mutually independent. The excess in the output,
Ofa � fa, is the minimum of the excesses Xi , over all i 2 Œt �. Thus,

Pr
h
Ofa � fa � "kf�ak1

i
D Pr ŒminfX1; : : : ; Xtg � "kf�ak1�

D Pr

"
t̂

iD1

.Xi � "kf�ak1/
#

D
tY

iD1

PrŒXi � "kf�ak1�

� 1

2t
;

and using our choice of t , this probability is at most ı. Thus, we have shown that, with high probability,

fa � Ofa � fa C "kf�ak1 ;

where the left inequality always holds, and the right inequality fails with probability at most ı.

The reason this estimate is weaker than that of Count Sketch is that its deviation is bounded by "kf�ak1, rather

than "kf�ak2. For all vectors z 2 R
n, we have kzk1 � kzk2. The inequality is tight when z has a single nonzero entry.

It is at its weakest when all entries of z are equal in absolute value: the two norms are then off by a factor of
p
n from

each other. Thus, the quality of the estimate of Count Sketch gets better (in comparison to Count-Min Sketch) as the

stream’s frequency vector gets more “spread out”.

4.5 Comparison of Frequency Estimation Methods

At this point, we have studied three methods to estimate frequencies of tokens in a stream. The following table throws

in a fourth method, and compares these methods by summarizing their key features.

Method Ofa � fa 2 � � � Space Error Probability Model

Misra-Gries
�
� "kf�ak1; 0

�
O
�

1
"
.logmC logn/

�
0 (deterministic) Cash register

Count Sketch
�
� "kf�ak2; "kf�ak2

�
O
�

1
"2 log 1

ı
� .logmC logn/

�
ı (overall) Turnstile

Count-Min Sketch
�
0; "kf�ak1

�
O
�

1
"

log 1
ı
� .logmC logn/

�
ı (upper bound only) Cash register

Count/Median
�
� "kf�ak1; "kf�ak1

�
O
�

1
"

log 1
ı
� .logmC logn/

�
ı (overall) Turnstile

The claims in the first row can be proved by analyzing the Misra-Gries algorithm from Lecture 1 slightly differently.

The last row refers to an algorithm that maintains the same data structure as the Count-Min Sketch, but answers queries

by reporting the median of the absolute values of the relevant counters, rather than the minimun. It is a simple (and

instructive) exercise to analyze this algorithm and prove the claims in the last row.

Exercises

4-1 Prove that for every integer n � 1 and every vector z 2 R
n, we have kzk1=

p
n � kzk2 � kzk1. For both

inequalities, determine when equality holds.

4-2 Write out the Count/Median algorithm formally and prove that it satisfies the properties claimed in the last row

of the above table.

20

D
R

A
FT

LECTURE 4. FINDING FREQUENT ITEMS VIA SKETCHING
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

4-3 Our estimate of "kf�ak2 on the absolute error of Count Sketch is too pessimistic in many practical situations

where the data are highly skewed, i.e., where most of the weight of the vector f is supported on a small “constant”

number of elements. To make this precise, we define f
res.`/
�a to be the .n � 1/-dimensional vector obtained by

dropping the ath entry of f and then setting the ` largest (by absolute value) entries to zero.

Now consider the Count Sketch estimate Ofa as computed by the algorithm in Sec 4.3.2 with the only change

being that k is set to 6="2. Prove that

Pr
h
j Ofa � faj � "kfres.`/

�a k2
i
� ı ;

where ` D 1="2.

21

D
R

A
FTLecture 5

Estimating Frequency Moments

5.1 Background and Motivation

We are in the vanilla streaming model. We have a stream � D ha1; : : : ; ami, with each aj 2 Œn�, and this implicitly

defines a frequency vector f D f.�/ D .f1; : : : ; fn/. Note that f1 C � � � C fn D m. The kth frequency moment of the

stream, denoted Fk.�/ or simply Fk , is defined as follows:

Fk WD
nX

j D1

f k
j D kfkkk : (5.1)

Using the terminology “kth” suggests that k is a positive integer. But in fact the definition above makes sense

for every real k > 0. And we can even give it a meaning for k D 0, if we first rewrite the definition of Fk slightly:

Fk D
P

j Wfj >0 f
k

j . With this definition, we get

F0 D
X

j Wfj >0

f 0
j D jfj W fj > 0gj ;

which is the number of distinct tokens in � . (We could have arrived at the same result by sticking with the original

definition of Fk and adopting the convention 00 D 0.)

We have seen that F0 can be ."; ı/-approximated using space logarithmic in m and n. And F1 D m is trivial to

compute exactly. Can we say anything for general Fk? We shall investigate this problem in this and the next few

lectures.

By way of motivation, note that F2 represents the size of the self join r ‰ r , where r is a relation in a database,

with fj denoting the frequency of the value j of the join attribute. Imagine that we are in a situation where r is a huge

relation and n, the size of the domain of the join attribute, is also huge; the tuples can only be accessed in streaming

fashion (or perhaps it is much cheaper to access them this way than to use random access). Can we, with one pass

over the relation r , compute a good estimate of the self join size? Estimation of join sizes is a crucial step in database

query optimization.

The solution we shall eventually see for this F2 estimation problem will in fact allow us to estimate arbitrary equi-

join sizes (not just self joins). For now, though, we give an ."; ı/-approximation for arbitrary Fk , provided k � 2,

using space sublinear in m and n. The algorithm we present is due to Alon, Matias and Szegedy [AMS99], and is not

the best algorithm for the problem, though it is the easiest to understand and analyze.

22

D
R

A
FT

LECTURE 5. ESTIMATING FREQUENCY MOMENTS
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

5.2 The AMS Estimator for Fk

We first describe a surprisingly simple basic estimator that gets the answer right in expectation, i.e., it is an unbiased

estimator. Eventually, we shall run many independent copies of this basic estimator in parallel and combine the results

to get our final estimator, which will have good error guarantees.

The estimator works as follows. Pick a token from the stream � uniformly at random, i.e., pick a position J 2R Œm�.

Count the length, m, of the stream and the number, r , of occurrences of our picked token aJ in the stream from that

point on: r D jfj � J W aj D aJ gj. The basic estimator is then defined to be m.rk � .r � 1/k/.
The catch is that we don’t knowm beforehand, and picking a token uniformly at random requires a little cleverness,

as seen in the pseudocode below.

Initialize : .m; r; a/ .0; 0; 0/ ;

Process j :

m mC 1 ;1

ˇ random bit with PrŒˇ D 1� D 1=m ;2

if ˇ D 1 then3

a j ;4

r 0 ;5

if j D a then6

r r C 1 ;7

Output : m.rk � .r � 1/k/ ;

This algorithm usesO.logm/ bits to storem and r , plus dlogne bits to store the token a, for a total space usage of

O.logmC logn/. Although stated for the vanilla streaming model, it has a natural generalization to the cash register

model. It is a good homework exercise to figure this out.

5.3 Analysis of the Basic Estimator

First of all, let us agree that the algorithm does indeed compute r as described above. For the analysis, it will be

convenient to think of the algorithm as picking a random token from � in two steps, as follows.

1. Pick a random token value, a 2 Œn�, with PrŒa D j � D fj =m for each j 2 Œn�.

2. Pick one of the fa occurrences of a in � uniformly at random.

Let A and R denote the (random) values of a and r after the algorithm has processed � , and let X denote its output.

Taking the above viewpoint, let us condition on the event A D j , for some particular j 2 Œn�. Under this condition,

R is equally likely to be any of the values f1; : : : ; fj g, depending on which of the fj occurrences of j was picked by

the algorithm. Therefore,

EŒX j A D j � D EŒm.Rk � .R � 1/k/ j A D j � D
fjX

iD1

1

fj

�m.ik � .i � 1/k/ D m

fj

.f k
j � 0k/ :

And

EŒX� D
nX

j D1

PrŒA D j � � EŒX j A D j � D
nX

j D1

fj

m
� m
fj

� f k
j D Fk :

This shows that X is indeed an unbiased estimator for Fk .

23

D
R

A
FT

LECTURE 5. ESTIMATING FREQUENCY MOMENTS
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

We shall now bound VarŒX� from above. Calculating the expectation as before, we have

VarŒX� � EŒX2� D
nX

j D1

fj

m

fjX

iD1

1

fj

�m2.ik � .i � 1/k/2 D m

nX

j D1

fjX

iD1

�
ik � .i � 1/k

�2

: (5.2)

By the mean value theorem (from elementary calculus), for all x � 1, there exists �.x/ 2 Œx � 1; x� such that

xk � .x � 1/k D k�.x/k�1 � kxk�1 ;

where the last step uses k � 1. Using this bound in (5.2), we get

VarŒX� � m

nX

j D1

fjX

iD1

kik�1
�
ik � .i � 1/k

�

� m

nX

j D1

kf k�1
j

fjX

iD1

�
ik � .i � 1/k

�

D m

nX

j D1

kf k�1
j � f k

j

D kF1F2k�1 : (5.3)

For reasons we shall soon see, it will be convenient to bound VarŒX� by a multiple of EŒX�2, i.e., F 2
k

. To do so, we

shall use the following lemma.

Lemma 5.3.1. Let n > 0 be an integer and let x1; : : : ; xn � 0 and k � 1 be reals. Then

�X
xi

� �X
x2k�1

i

�
� n1�1=k

�X
xk

i

�2

;

where all the summations range over i 2 Œn�.

Proof. We continue to use the convention that summations range over i 2 Œn�. Let x� D maxi2Œn� xi . Then, we have

xk�1
� D

�
xk

�

�.k�1/=k �
�X

xk
i

�.k�1/=k

: (5.4)

Since k � 1, by the power mean inequality (or directly, by the convexity of the function x 7! xk), we have

1

n

X
xi �

�
1

n

X
xk

i

�1=k

: (5.5)

Using (5.4) and (5.5) in the second and third steps (respectively) below, we compute

�X
xi

� �X
x2k�1

i

�
�

�X
xi

� �
xk�1

�

X
xk

i

�

�
�X

xi

� �X
xk

i

�.k�1/=k �X
xk

i

�

� n1�1=k
�X

xk
i

�1=k �X
xk

i

�.k�1/=k �X
xk

i

�

D n1�1=k
�X

xk
i

�2

;

which completes the proof.

Using the above lemma in (5.3), with xj D fj , we get

VarŒX� � kF1F2k�1 � kn1�1=kF 2
k : (5.6)

We are now ready to present our final Fk estimator, which combines several independent basic estimators.

24

D
R

A
FT

LECTURE 5. ESTIMATING FREQUENCY MOMENTS
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

5.4 The Median-of-Means Improvement

Unfortunately, we cannot apply the median trick from Section 2.4 to our basic estimator directly. This is because its

variance is so large that we are unable to bound below 1
2

the probability of an " relative deviation in the estimator. So

we first bring the variance down by averaging a number of independent copies of the basic estimator, and then apply

the median trick. The next theorem — a useful general-purpose theorem — quantifies this precisely.

Lemma 5.4.1. There is a universal positive constant c such that the following holds. Let X be the distribution of an

unbiased estimator for a real quantity Q. Let fXij gi2Œt �;j 2Œk� be a collection of independent random variables with

each Xij distributed identically to X , where

t D c log
1

ı
; and k D 3VarŒX�

"2 EŒX�2
:

Let Z D mediani2Œt �

�
1
k

Pk
j D1Xij

�
. Then, we have PrŒjZ �Qj � "Q� � ı.

Proof. For each i 2 Œt �, let Yi D 1
k

Pk
j D1Xij . Then, by linearity of expectation, we have EŒYi � D Q. Since the

variablesXij are (at least) pairwise independent, we have

VarŒYi � D
1

k2

kX

j D1

VarŒXij � D
VarŒX�

k
:

Applying Chebyshev’s inequality, we obtain

PrŒjYi �Qj � "Q� �
VarŒYi �

."Q/2
D VarŒX�

k"2 EŒX�2
D 1

3
:

Now an application of a Chernoff bound (exactly as in the median trick from Section 2.4) tells us that for an appropriate

choice of c, we have PrŒjZ �Qj � "Q� � ı.

Using this lemma, we can build a final estimator from our basic AMS estimator, X , for Fk : We simply compute

the median of t D c log.1=ı/ intermediate estimators, each of which is the mean of r basic estimators. To make the

final estimator an ."; ı/-approximation to Fk , we need

r D 3VarŒX�

"2 EŒX�2
� 3kn1�1=kF 2

k

"2F 2
k

D 3k

"2
� n1�1=k ;

where the inequality uses (5.6). This leads to a final space bound that is t r times the space usage of a basic estimator,

i.e.,

space � t r �O.logmC logn/ D O

�
1

"2
log

1

ı
� kn1�1=k.logmC logn/

�
:

For the first time in the course, we have a space bound that is sublinear, but not polylogarithmic in n (or m). In such

cases, it is convenient to adopt an eO-notation, which suppresses factors polynomial in logm, logn and log.1=ı/. We

can then remember this space bound as simply eO."�2n1�1=k/, treating k as a constant.

The above bound is good, but not optimal, as we shall soon see. The optimal bound (upto polylogarithmic factors)

is eO."�2n1�2=k/ instead; there are known lower bounds of �.n1�2=k/ and �."�2/. We shall see how to achieve this

better upper bound later in the course.

25

D
R

A
FTLecture 6

The Tug-of-War Sketch

At this point, we have seen a sublinear-space algorithm — the AMS estimator — for estimating the kth frequency

moment, Fk D f k
1 C � � � C f k

n , of a stream � . This algorithm works for k � 2, and its space usage depends on n

as eO.n1�1=k/. This fails to be polylogarithmic even in the important case k D 2, which we used as our motivating

example when introducing frequency moments in the previous lecture. Also, the algorithm does not produce a sketch

in the sense of Section 4.2.

But Alon, Matias and Szegedy [AMS99] also gave an amazing algorithm that does produce a sketch, of logarithmic

size, which allows one to estimate F2. What is amazing about the algorithm is that seems to do almost nothing.

6.1 The Basic Sketch

We describe the algorithm in the turnstile model.

Initialize :

Choose a random hash function h W Œn�! f�1; 1g from a 4-universal family ;1

x 0 ;2

Process .j; c/:

x x C ch.j / ;3

Output : x2

The sketch is simply the random variable x. It is pulled in the positive direction by those tokens j with h.j / D 1,

and is pulled in the negative direction by the rest of the tokens; hence the name “Tug-of-War Sketch”. Clearly, the

absolute value of x never exceeds f1 C � � � C fk D m, so it takes O.logm/ bits to store this sketch. It also takes

O.logn/ bits to store the hash function h, for an appropriate 4-universal family.

6.1.1 The Quality of the Estimate

Let X denote the value of x after the algorithm has processed � . For convenience, define Yj D h.j / for each j 2 Œn�.
Then X DPn

j D1 fjYj . Therefore,

EŒX2� D E

� nX

j D1

f 2
j Y

2
j C

nX

iD1

nX

j D1
j ¤i

fifjYiYj

�
D

nX

j D1

f 2
j C

nX

iD1

nX

j D1
j ¤i

fifj EŒYi �EŒYj � D F2 ;

26

D
R

A
FT

LECTURE 6. THE TUG-OF-WAR SKETCH
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

where we used the fact that fYj gj 2Œn� are pairwise independent (in fact, they are 4-wise independent, because h was

picked from a 4-universal family), and then the fact that EŒYj � D 0 for all j 2 Œn�. This shows that the algorithm’s

output, X2, is indeed an unbiased estimator for F2.

The variance of the estimator is VarŒX2� D EŒX4� � EŒX2�2 D EŒX4� � F 2
2 . We bound this as follows. By

linearity of expectation, we have

EŒX4� D
nX

iD1

nX

j D1

nX

kD1

nX

`D1

fifjfkf` EŒYiYjYkY`� :

Suppose one of the indices in .i; j; k; `/ appears exactly once in that 4-tuple. Without loss of generality, we have

i … fj; k; `g. By 4-wise independence, we then have EŒYiYjYkY`� D EŒYi �EŒYjYkY`� D 0, because EŒYi � D 0. It

follows that the only potentially nonzero terms in the above sum correspond to those 4-tuples .i; j; k; `/ that consist

either of one index occurring four times, or else two distinct indices occurring twice each. Therefore we have

EŒX4� D
nX

j D1

f 4
j EŒY 4

j �C 6
nX

iD1

nX

j DiC1

f 2
i f

2
j EŒY 2

i Y
2

j � D F4 C 6
nX

iD1

nX

j DiC1

f 2
i f

2
j ;

where the coefficient “6” corresponds to the
�

4
2

�
D 6 permutations of .i; i; j; j / with i ¤ j . Thus,

VarŒX2� D F4 � F 2
2 C 6

nX

iD1

nX

j DiC1

f 2
i f

2
j

D F4 � F 2
2 C 3

�� nX

j D1

f 2
j

�2

�
nX

j D1

f 4
j

�

D F4 � F 2
2 C 3.F 2

2 � F4/ � 2F 2
2 :

6.2 The Final Sketch

As before, having bounded the variance, we can design a final sketch from the above basic sketch by a median-of-

means improvement. By Lemma 5.4.1, this will blow up the space usage by a factor of

O.1/ � VarŒX2�

"2 EŒX2�2
� log

1

ı
� O.1/ � 2F 2

2

"2F 2
2

� log
1

ı
D O

�
1

"2
log

1

ı

�

in order to give an ."; ı/-approximation. Thus, we have estimated F2 using space O."�2 log.ı�1/.logm C logn//,

with a sketching algorithm that in fact computes a linear sketch.

6.2.1 A Geometric Interpretation

The AMS Tug-of-War Sketch has a nice geometric interpretation. Consider a final sketch that consists of t independent

copies of the basic sketch. LetM 2 R
t�n be the matrix that “transforms” the frequency vector f into the t-dimensional

sketch vector x. Note that M is not a fixed matrix but a random matrix with ˙1 entries: it is drawn from a certain

distribution described implicitly by the hash family. Specifically, if Mij denotes the .i; j /-entry of M , then Mij D
hi .j /, where hi is the hash function used by the i th basic sketch.

Let t D 6="2. By stopping the analysis in Lemma 5.4.1 after the Chebyshev step (and before the “median trick”

Chernoff step), we obtain that

Pr
M

�ˇ̌
ˇ1
t

tX

iD1

x2
i � F2

ˇ̌
ˇ � "F2

�
� 1

3
:

27

D
R

A
FT

LECTURE 6. THE TUG-OF-WAR SKETCH
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

Thus, with probability at least 2=3, we have

1p
t
M f

2

D 1p
t
kxk2 2

hp
1 � " � kfk2;

p
1C "kfk2

i
� Œ.1 � "/kfk2; .1C "/kfk2� :

This can be interpreted as follows. The (random) matrix M=
p
t performs a “dimension reduction”, reducing an n-

dimensional vector f to a t-dimensional sketch x (with t D O.1="2/), while preserving `2-norm within a .1˙"/ factor.

Of course, this is only guaranteed to happen with probability at least 2=3. But clearly this correctness probability can

be boosted to an arbitrary constant less than 1, while keeping t D O.1="2/.

The “amazing” AMS sketch now feels quite natural, under this geometric interpretation. We are simply using

dimension reduction to maintain a low-dimensional image of the frequency vector. This image, by design, has the

property that its `2-length approximates that of the frequency vector very well. Which of course is what we’re after,

because the second frequency moment, F2, is just the square of the `2-length.

Since the sketch is linear, we now also have an algorithm to estimate the `2-difference kf.�/ � f.� 0/k2 between

two streams � and � 0.

28

D
R

A
FTLecture 7

Estimating Norms Using Stable Distributions

As noted at the end of Lecture 6, the AMS Tug-of-War sketch allows us to estimate the `2-difference between two data

streams. Estimating similarity metrics between streams is an important class of problems, so it is nice to have such a

clean solution for this specific metric.

However, this raises a burning question: Can we do the same for other `p norms, especially the `1 norm? The

`1-difference between two streams can be interpreted (modulo appropriate scaling) as the variational distance (a.k.a.,

statistical distance) between two probability distributions: a fundamental and important metric. Unfortunately, al-

though our log-space F2 algorithm automatically gave us a log-space `2 algorithm, the trivial log-space F1 algorithm

works only in the cash register model and does not give an `1 algorithm at all.

It turns out that thinking harder about the geometric interpretation of the AMS Tug-of-War Sketch leads us on

a path to polylogarithmic space `p norm estimation algorithms, for all p 2 .0; 2�. Such algorithms were given by

Indyk [Ind06], and we shall study them now. For the first time in this course, it will be necessary to gloss over several

technical details of the algorithms, so as to have a clear picture of the important ideas.

7.1 A Different `2 Algorithm

The length-preserving dimension reduction achieved by the Tug-of-War Sketch is reminiscent of the famous Johnson-

Lindenstrauss Lemma [JL84, FM88]. One high-level way of stating the JL Lemma is that the random linear map

given by a t � n matrix whose entries are independently drawn from the standard normal distribution N .0; 1/ is

length-preserving (up to a scaling factor) with high probability. To achieve 1˙" error, it suffices to take t D O.1="2/.

Let us call such a matrix a JL Sketch matrix. Notice that the sketch matrix for the Tug-of-War sketch is a very similar

object, except that

1. its entries are uniformly distributed in f�1; 1g: a much simpler distribution;

2. its entries do not have to be fully independent: 4-wise independence in each row suffices; and

3. it has a succinct description: it suffices to describe the hash functions that generate the rows.

The above properties make the Tug-of-War Sketch “data stream friendly”. But as a thought experiment one can

consider an algorithm that uses a JL Sketch matrix instead. It would give a correct algorithm for `2 estimation,

except that its space usage would be very large, as we would have to store the entire sketch matrix. In fact, since this

hypothetical algorithm calls for arithmetic with real numbers, it is unimplementable as stated.

Nevertheless, this algorithm has something to teach us, and will generalize to give (admittedly unimplementable)

`p algorithms for each p 2 .0; 2�. Later we shall make these algorithms realistic and space-efficient. For now, we

consider the basic sketch version of this algorithm, i.e., we maintain just one entry of M f, where M is a JL Sketch

matrix. The pseudocode below shows the operations involved.

29

D
R

A
FT

LECTURE 7. ESTIMATING NORMS USING STABLE DISTRIBUTIONS
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

Initialize :

Choose Y1; : : : ; Yn independently, each from N .0; 1/ ;1

x 0 ;2

Process .j; c/:

x x C cYj ;3

Output : x2

Let X denote the value of x when this algorithm finishes processing � . Then X D Pn
j D1 fjYj . From basic

statistics, using the independence of the collection fYj gj 2Œn�, we know that X has the same distribution as kfk2Y ,

where Y � N .0; 1/. This is a fundamental property of the normal distribution.1 Therefore, we have EŒX2� D kfk22 D
F2, which gives us our unbiased estimator for F2.

7.2 Stable Distributions

The fundamental property of the normal distribution that was used above has a generalization, which is the key to

generalizing this algorithm. The next definition captures the general property.

Definition 7.2.1. Let p > 0 be a real number. A probability distribution Dp over the reals is said to be p-stable if for

all integers n � 1 and all c D .c1; : : : ; cn/ 2 R
n, the following property holds. If X1; : : : ; Xn are independent and

each Xi � Dp, then c1X1 C � � � C cnXn has the same distribution as NcX , where X � Dp and

Nc D
�
c

p
1 C � � � C cp

n

�1=p D kckp :

The concept of stable distributions dates back to Lévy [Lév54] and is more general than what we need here. It is

known that p-stable distributions exist for all p 2 .0; 2�, and do not exist for any p > 2. The fundamental property

above can be stated simply as: “The standard normal distribution is 2-stable.”

Another important example of a stable distribution is the Cauchy distribution, which can be shown to be 1-stable.

Just as the standard normal distribution has density function

�.x/ D 1p
2�
e�x2=2 ;

the Cauchy distribution also has a density function expressible in closed form as

c.x/ D 1

�.1C x2/
:

But what is really important to us is not so much that the density function of Dp be expressible in closed form, but

that it be easy to generate random samples drawn from Dp. The Chambers-Mallows-Stuck method [CMS76] gives us

the following simple algorithm. Let

X D sin.p�/

.cos �/1=p

�
cos..1� p/�/

ln.1=r/

�.1�p/=p

;

where .�; r/ 2R Œ��=2; �=2� � Œ0; 1�. Then the distribution of X is p-stable.

Replacing N .0; 1/ with Dp in the above pseudocode, where Dp is p-stable, allows us to generate a random

variable distributed according to Dp “scaled” by kfkp . Note that the scaling factor kfkp is the quantity we want to

estimate. To estimate it, we shall simply take the median of a number of samples from the scaled distribution, i.e., we

shall maintain a sketch consisting of several copies of the basic sketch and output the median of (the absolute values

of) the entries of the sketch vector. Here is our final “idealized” sketch.

1The proof of this fact is a nice exercise in calculus.

30

D
R

A
FT

LECTURE 7. ESTIMATING NORMS USING STABLE DISTRIBUTIONS
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

Initialize :

MŒ1 : : : t �Œ1 : : : n� tn independent samples from Dp, where t D O."�2 log.ı�1// ;1

xŒ1 : : : t � E0 ;2

Process .j; c/:

for i D 1 to t do xŒi � xŒi �C cM Œi�Œj � ;3

Output : median1�i�t jxi j=median.jDpj/ ;

7.3 The Median of a Distribution and its Estimation

To analyze this algorithm, we need the concept of the median of a probability distribution over the reals. Let D be an

absolutely continuous distribution, let � be its density function, and let X � D. A median of D is a real number �

that satisfies
1

2
D PrŒX � �� D

Z �

�1

�.x/ dx :

The distributions that we are concerned with here are nice enough to have uniquely defined medians; we will simply

speak of the median of a distribution. For such a distribution D, we will denote this unique median as median.D/.

For a distribution D, with density function �, we denote by jDj the distribution of the absolute value of a random

variable drawn from D. It is easy to show that the density function of jDj is , where

 .x/ D
(
2�.x/ ; if x � 0
0 if x < 0 :

For p 2 .0; 2� and c 2 R, let �p;c denote the density function of the distribution of cjX j, where X � Dp , and let

�p;c denote the median of this distribution. Note that

�p;c.x/ D
1

c
�p;1

�x
c

�
; and �p;c D c�p;1 :

Let Xi denote the final value of xi after the above algorithm has processed � . By the earlier discussion, and the

defintion of p-stability, we see that Xi � kfkpX , where X � Dp . Therefore, jXi j=median.jDpj/ has a distribution

whose density function is �p;�, where � D kfkp=median.jDpj/ D kfkp=�p;1. Thus, the median of this distribution

is �p;� D ��p;1 D kfkp.

The algorithm — which seeks to estimate kfkp — can thus be seen as attempting to estimate the median of an

appropriate distribution by drawing t D O."�2 log.ı�1// samples from it and outputting the sample median. We now

show that this does give a fairly accurate estimate.

7.4 The Accuracy of the Estimate

Lemma 7.4.1. Let " > 0, and let D be a distribution over R with density function �, and with a unique median � > 0.

Suppose that � is absolutely continuous on Œ.1 � "/�; .1C "/�� and let �� D minf�.x/ W x 2 Œ.1 � "/�; .1C "/��g.
Let Y D median1�i�t Xi , where X1; : : : ; Xt are independent samples from D. Then

PrŒjY � �j � "�� � 2 exp

�
�2
3
"2�2�2

�t

�
:

Proof. We bound PrŒY < .1 � "/�� from above. A similar argument bounds PrŒY > .1C "/�� and to complete the

proof we just add the two bounds.

31

D
R

A
FT

LECTURE 7. ESTIMATING NORMS USING STABLE DISTRIBUTIONS
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

Let ˆ.y/ D R y

�1
�.x/ dx be the cumulative distribution function of D. Then, for each i 2 Œt �, we have

PrŒXi < .1 � "/�� D
Z �

�1

�.x/ dx �
Z �

.1�"/�

�.x/ dx

D 1

2
�ˆ.�/Cˆ..1 � "/�/

D 1

2
� "��.�/ ;

for some � 2 Œ.1� "/�;��, where the last step uses the mean value theorem and the fundamental theorem of calculus:

ˆ0 D �. Let ˛ be defined by �
1

2
� "��.�/

�
.1C ˛/ D 1

2
: (7.1)

Let N D jfi 2 Œt � W Xi < .1 � "/�gj. By linearity of expectation, we have EŒN � D .1
2
� "��.�//t . If the sample

median, Y , falls below a limit �, then at least half the Xi s must fall below �. Therefore

PrŒY < .1 � "/�� � PrŒN � t=2� D PrŒN � .1C ˛/EŒN �� � exp.�EŒN �˛2=3/ ;

by a standard Chernoff bound. Now, from (7.1), we derive EŒN �˛ D "��.�/ and ˛ � 2"��.�/. Therefore

PrŒY < .1 � "/�� � exp

�
�2
3
"2�2�.�/2t

�
� exp

�
�2
3
"2�2�2

�t

�
:

To apply the above lemma to our situation we need an estimate for ��. We will be using the lemma with � D �p;�

and � D �p;� D kfkp , where � D kfkp=�p;1. Therefore,

��� D �p;� �minf�p;�.x/ W x 2 Œ.1 � "/�p;�; .1C "/�p;��g

D ��p;1 �min

�
1

�
�p;1

�x
�

�
W x 2 Œ.1 � "/��p;1; .1C "/��p;1�

�

D �p;1 �minf�p;1.y/ W y 2 Œ.1 � "/�p;1; .1C "/�p;1�g ;

which is a constant depending only on p: call it cp . Thus, by Lemma 7.4.1, the output Y of the algorithm satisfies

Pr
hˇ̌
Y � kfkp

ˇ̌
� "kfkp

i
� exp

�
�2
3
"2c2

pt

�
� ı ;

for the setting t D .3=.2c2
p//"

�2 log.ı�1/.

7.5 Annoying Technical Details

There are two glaring issues with the “idealized” sketch we have just discussed and proven correct. As stated, we do

not have a proper algorithm to implement the sketch, because

� the sketch uses real numbers, and algorithms can only do bounded-precision arithmetic; and

� the sketch depends on a huge matrix — with n columns — that does not have a convenient implicit representa-

tion.

We will not go into the details of how these matters are resolved, but here is an outline.

We can approximate all real numbers involved by rational numbers with sufficient precision, while affecting the

output by only a small amount. The number of bits required per entry of the matrix M is only logarithmic in n, 1="

and 1=ı.

32

D
R

A
FT

LECTURE 7. ESTIMATING NORMS USING STABLE DISTRIBUTIONS
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

We can avoid storing the matrix M explicitly by using a pseudorandom generator (PRG) designed to work with

space-bounded algorithms. One such generator is given by a theorem of Nisan [Nis90]. Upon reading an update to

a token j , we use the PRG (seeded with j plus the initial random seed) to generate the j th column of M . This

transformation blows up the space usage by a factor logarithmic in n and adds 1=n to the error probability.

There is actually a third issue: there does not seem to be a theorem in the literature that proves that cp (see the

analysis above) is nonzero! We tacitly assumed this. For c1, we can show this by explicit calculation, because we have

a convenient closed-form expression for the density function of the Cauchy distribution. Indyk [Ind06] resolves this

issue by changing the algorithm for `p (p ¤ 1) slightly in a way that allows him to perform the necessary calculations.

Have a look at his paper for the details on this, and the other two matters discussed above.

7.5.1 An Open Question

Life would be a lot easier if there were some way to generate entries of a suitable `p-sketching matrix M fromO.1/-

wise independent random variables, similar to the way 4-wise indepdent collections of ˙1-valued random variables

worked for `2. Is there? Then we would not have to rely on the heavy hammer of Nisan’s PRG, and perhaps we could

make do with very simple arithmetic, as in the Tug-of-War Sketch.

33

D
R

A
FTLecture 8

Estimating Norms via Precision Sampling

At this point, for each p 2 .0; 2�, we have a polylogarithmic-sized sketch, computable in polylogarithmic space, that

lets us estimate the `p-norm, kfkp , of the frequency vector f determined by an input stream in the general turnstile

model. For p > 2, we have a cash register algorithm that estimates the frequency moment Fp , but it does not give a

sketch, nor is its space usage optimal in terms of n.

A solution that estimates `p space-optimally via a linear sketch was given by Indyk and Woodruff [IW05], and

this was simplified somewhat by Bhuvanagiri et al. [BGKS06]. Though the underlying technique in these algorithms

is useful in many places, it is complicated enough that we prefer to discuss a more recent simpler solution, due to

Andoni et al. [AKO11]. Their solution uses an interesting new primitive, which they call precision sampling. For our

purposes, we should think of the primitive as “sum estimation” instead.

8.1 The Basic Idea

At a very high level, the idea is to try to estimate f
p

j , for each token j 2 Œn�, using a frequency estimation sketch such

as Count Sketch, which we saw in Lecture 4.

34

D
R

A
FTLecture 9

Finding the Median

Scribe: Jon Denning

Finding the mean of a stream of numbers is trivial, requiring only logarithmic space. How about finding the me-

dian? To understand this, we shall now study the main algorithm from a seminal paper of Munro and Paterson [MP80]

that has come to be recognized as the “first data streaming paper.”

9.1 The Problem

We are working in the vanilla stream model. Our input is a stream of numbers � D ha1; a2; : : : ; ami, with each

ai 2 Œn�. Our goal is to output the median of these numbers.

Recall that the median of the collection faigi2Œm� is defined as the real number y that minimizes
Pm

iD1 jy � ai j,
the total distance to the numbers in the collection. Let � be a permutation of Œm� that sorts the collection, i.e., makes

a�.1/ � a�.2/ � � � � � a�.m/. It is easy to see that if m is odd then y D a�.dm=2e/, whereas if m is even then

y D 1
2
.a�.m=2/C a�.m=2C1//. To avoid annoying case analysis depending on the parity ofm, which is irrelevant from

an algorithmic point of view, we shall redefine the median of the collection to be a�.dm=2e/ always.

In fact we shall consider—and solve—a more general problem, namely SELECTION. Here, we are given a specific

integer r and asked to find the r th smallest element in the collection faigi2Œm�, i.e., the number a�.r/.

Suppose that the stream is sorted. Then the median of the stream is the value in the middle position (when m is

odd) or the average of the two on either side of the middle (whenm is even). More concisely, the median is the average

of the values at the bn=2c and dn=2e indices. (Running two copies of our algorithm finds the mathematical median.)

This leads us to a slight generalization: finding the r th element in a sorted set.

Definition 9.1.1. Given a set S of elements from a domainD with an imposed order and an element x 2 D, the rank

of x is the count of elements in the set S that are not greater than x.

rank.x; S/ D jfy 2 S W y � xgj

This definition of rank makes sense even if x does not belong to S . Note: we are working with sets (no repeats),

so assume they are all distinct. Otherwise, we’d have to consider the rank of an element in a multiset.

There are multiple ways of solving for the median. For example, sort array then pick the r th position. However,

the running time is not the best, because sort is in m logm time (not linear).

There is a way to solve this in linear time. This is done by partitioning the array into 5 chunks, find median, then

recurse to find median. The median of median will have rank in the whole array. So, we need to find the rank of this

35

D
R

A
FT

LECTURE 9. FINDING THE MEDIAN
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

element. If it’s > r or < r , recurse on the right or left half. Want rank of r � t if r is rank you want and t is rank of

median.

Unfortunately, there’s no way to solve this median problem in one pass as it is stated. There is a theorem that says,

in one pass, selection requires�.minfm; ng/ space (basically linear space).

Can we do something interesting in two passes? Yes! Like in the Misra-Gries algorithm, in two passes we have

space usage down close to eO.pn/ space (tilde hides some constant). It is similar but not in log. So, let’s use more

passes! Inp passes, we can achieve eO.n1=p/ space. Makingp large enough can “get rid of n.” Let’s usep D O.logn/.

In O.logn/ passes, we’re down to eO.1/ space.

We will give an algorithm that uses p passes, and uses space O.n1=p/. It will be difficult to state in pseudo code,

but it is very elegant.

The concept is called i -sample (i 2 Z): from a set of numbers, construct a sample from it by selecting one in every

n integers. For example, a 1-sample is about half the set, and a 2-sample is about a quarter of the set.

Definition 9.1.2. An i -sample of a population (set of numbers) of size 2is (s is some parameter) is a sorted sequence

of length s defined recursively as follows, where A ı B is stream A followed by stream B:

i D 0 W 0-sample(A) = sort.A/

i > 0 W i -sample(A ı B) D
D sort(evens((i � 1)-sample(A))

S
evens((i � 1)-sample(B)))

In other words, when i > 0, construct an .i � 1/-sample of the first part, and .i � 1/-sample of the second part

(each sorted sequence of length s). Then combine them by picking every even positioned element in the two sets and

insert in sorted order.

This algorithm says I want to run in a certain space bound, which defines what sample size can be done (can

afford). Process stream and then compute sample. Making big thing into small thing takes many layers of samples.

Claim: this sample gives us a good idea of the median.

Idea: each pass shrinks the size of candidate medians

9.2 Munro-Paterson Algorithm (1980)

Given r 2 Œm�, find the element of stream with rank = r . The feature of Munro-Paterson Algorithm is it uses p passes

in space O.m1=p log2�2=p m logn/. We have a notion of filters for each pass. At the start of the hth pass, we have

filters ah; bh such that

ah � rank-r element � bh:

Initially, we set a1 D �1; b1 D 1. The main action of algorithm: as we read stream, compute i -sample. Let mh

= number of elements in stream between the filters, ah and bh. With a1 and b1 as above,m1 D m. But as ah ! bh,

mi will shrink. During the pass, we will ignore any elements outside the interval ah; bh except to compute rank.ah/.

Build a t-sample of size s D S= logm, where S D target size, where t is such that 2ts D mh. It does not matter if this

equation is exactly satisfied; can always “pad” up.

Lemma 9.2.1. let x1 < x2 < : : : < xs be the i -sample (of size s) of a population P . jP j D 2is.

To construct this sample in a streaming fashion, we’ll have a working sample at each level and a current working

sample s (an .i � 1/-samples) that the new tokens go into. When the working samples become full .i � 1/-samples,

combine the two .i � 1/-samples into an i -sample. This uses 2s storage. (i.e., new data goes into 0-sample. When it’s

full, the combined goes into 1-sample, and so on.)

At the end of the pass, what should we see in the sample? t-sample contains 2t elements. Should be able to

construct rank of elements up to˙2t . In the final sample, we want rank r , so look at rank r=2t .

Let’s consider the j th element of this sample. We have some upper and lower bounds of the rank of this element.

Note: with lower bounds 2ij; 2iC1j and upper bounds 2i .i C j /; 2iC1.i C j /, ranks can overlap.

2ij � rank.xj ; P / � 2i .i C j /

36

D
R

A
FT

LECTURE 9. FINDING THE MEDIAN
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

Lij D lower boundD 2ij; Uij D upper bound D 2i .i C j /

An example, suppose these are elements of sample with given ranks

A B C D

.�� �� �/ rank.A/

.�� � ��/ rank.B/

.� �� ��/ rank.C /

.� �� ��/ rank.D/

" rank D r

A’s upper bound is too small andD’s lower bound is too large, so they will serve as the new filters. Update filters.

If ah D bh, output ah as answer.

Proof. We proceed by induction on i .

When i D 0, everything is trivially correct, because the sample is the whole population. Lij D Uij D j .

Consider the .i C 1/-sample, where i � 0: .i C 1/-sample is generated by joining two i -samples, a “blue”

population and a “red” population. We made an i -sample from blue population and then picked every other element.

Similarly for red population. Combined, they produce, for example,

i -sampleblue D b1 b2 b3 b4 b5 b6 b7 b8 b9 b10; i -samplered D r1 r2 r3 r4 r5 r6 r7 r8 r9 r10

.i C 1/-sample D sort.b2 b4 b6 b8 b10 r2 r4 r6 r8 r10/ D b2 b4 r2 b6 r4 b8 r6 b10 r8 r10:

Suppose, without loss of generality, the j th element of the .i C 1/-sample is a b (j D 6, for example), so it

must be the kth blue selected element from the blue i -sample (k D 4). This kth picked element means there are 2k

elements up to k. Now, some must have come from the red sample (j � k picked elements, or the 2.j � k/th element

in sample), because the [is sorted from blue and red samples.

rank.xj ; P / � Li;2k C Li;2.j �k/ by inductive hypothesis on rank of elements in sample over their respective

populations.

Combining all these lower bounds

LiC1;j D min
k
.Li;2k C Li;2.j �k// (9.1)

Note: the kth element in the .i C 1/-sample is the 2kth element in the blue sample, so the lower bound of the kth

element.

Upper bound: Let k be as before.

UiC1;j D max
k
.Ui;2k C Ui;2.j �kC1/�1/ (9.2)

Have to go up two red elements to find the upper bound, because one red element up is uncertainly bigger or

smaller than our blue element. (Check that Lij and Uij as defined by (9.1) and (9.2) satisfy lemma.)

Back to the problem, look at the upper bounds for a sample. At some point we are above the rank, Ut;j < r but

Ut;j C1 � r . We know that all these elements (up to j) are less than the rank we’re concerned with. In the final t-

sample constructed, look for uth element where u is the min such that Utu � r , i.e., 2t .tCu/ � r) tCu D dr=2te.
u is an integer, so u D dr=2te � t . Set a uth element in sample for the next pass.

Similarly, find the vth element where v is max such that Ltv � r , i.e., 2tv � r) v D br=2tc. Set b vth

element for the next pass.

Based on the sample at the end of the pass, update filters to get ahC1 and bhC1. Each pass reduces the number of

elements under consideration by S , whittling it down by the factor .mh log2m/=S .

37

D
R

A
FT

LECTURE 9. FINDING THE MEDIAN
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

Lemma 9.2.2. If there are n elements between filters at the start of a pass, then there are O.n log2 n=S/ elements

between filters at the end of the pass.

mhC1 D O

mh log2m

S

!
D O

�
mh

S= log2m

�

mh D O
�

m

.S= log2m/h�1

�

We are done making passes when the number of candidates is down to S . At this point, we have enough space to

store all elements between the filters and can find the rank element wanted.

The number of passes required p is such that, ignoring constants,

�
�

m

.S= log2 m/p�1

�
D �.S/

) m log2p�2 m D Sp

) m1=p log2�2=p m D S

where S is the number of elements from the stream that we can store.

We’re trading off the number of passes for the amount of space.

Note: this computes the exact median (or any rank element). Also, the magnitude of the elements makes no

difference. We do a compare for<, but don’t care how much less it is. This algorithm is immune to the magnitudes of

the elements.

38

D
R

A
FTLecture 10

Approximate Selection

Scribe: Alina Djamankulova

10.1 Two approaches

The selection problem is to find an element of a given rank r, where rank is a number of element that are less than

or equal to the given element. The algorithm we looked at previously gives us the exact answer, the actual rank of

an element. Now we are going to look at two different algorithms that take only one pass over data. And therefore

give us an approximate answer. We’ll give only rough detailes of the algorithms analysing them at very high level.

Munro-Paterson algorithm we previously looked at considered this problem.

1. Given target rank r, return element of rank � r . The important note is that we are not looking for the approxi-

mate value of r element, which does not make a lot of sense.

Let us define a notion of relative rank. Relative rank is computed the following way

relrank.x; S/ D rank.x; S/

jS j
The relative rank is going to be some number between 0 and 1. For example, median is an element of relative

rank 1/2. We can generalize this in terms of quantiles. Top quantile is the element of relative rank 1/4.

Given target relative rank �, return element of relative rank 2 Œ� � "; � C "�
(" - approximation parameter, � - quantile problem) [Greenwald - Khanna ’01]

2. Random-order streams The idea is to create some really bad ordering of the elements in the stream. This does

not mean that we literally mess the data. But we just suppose that we can get data in the worse order it can be.

And if we can successfully solve this problem within the time and space limits, we are guaranteed to get good

results, since data is very unlikely to come in that messy order.

� Given a multiset of tokens, serialized into a sequence uniformly at random, and we need to compute the

approximate rank of the element. We can think of the problem in the following way.

We look at the multiset leaving the details of how we do it.

� Given r 2 [m], return element of rank r with high probability with respect to the randomness n the ordering

(say � 1 - ı/

(random order selection)[Guho - McGregor ’07]

39

D
R

A
FT

LECTURE 10. APPROXIMATE SELECTION
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

10.2 Greenwald - Khanna Algorithm

The algorithms has some slight similarities with Misra-Gries algoritms for solving frequent element problem. Maintain

a collection of s tuples .v1; g1; �1/; :::.vs ; gs ; �s/ where

vi is a value from stream so far (ı)

gi = min-rank (vi) - min-rank (vi � 1) // gain: how much more is this rank relative to the previously seen element.

Storing gi we can update easier and faster.

Minimum value seen so far and the maximum value seen so far will always be stored.

�i = max-rank (vi) - min-rank (vi) // range

min (ı) = v1 < ::: < vs = max (ı) // seen so far, increasing order

Initialize :

Starting reading elements from the stream;1

m 0 ;2

Process a token v:

Find i such that vi < v < viC1;3

v becomes the ”new” viC1 �! associated tuple = .v; 1; b2"mc/;4

m mC 1;5

if v = new min/new max then6

� 0 // every 1
"

elements;7

Check if compression is possible (withis some bound) and it it is, do the compression:8

if 9 i such that gi C giC1 C�iC1 � b2"mc then9

Remove i th tuple;10

Set giC1 gi C giC1;11

Output : a random element that is filtered12

Space: O(1
"

log "mlogn)

At any point, G-K algorithm can tell the rank of any element up to ˙e where e = maxi .
gi C�i

2
/

min-rank (vi) = sumi
j D1gj

max-rank (vi) = sumi
j D1gj C�i

Identify i such that vi < v < viC1

Then rank(v) 2 [min-rank(vi), max-rank(viC1)]

In this statement min-rank(vi) = a and max-rank(viC1) = b. So we do approach to the real rank of the element with a

and b filters.

rank (v) � min-rank (vi) = sumi
j D1gj

rank (v) � max-rank (viC1) = sumi
j D1gj C�iC1

40

D
R

A
FT

LECTURE 10. APPROXIMATE SELECTION
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

— rank range for v — � giC1 C�iC1 � 2e If we announce rank(v)� aCb
2

, then error � ˙. b�a
2
/ � e

Algorithm maintains the invariant gi C�i � 1C b2"mc. So ranks are known up to error
1Cb2"mc

2
= "m + 1/2

10.3 Guha-McGregor Algorithm

� Split stream into pieces: � D< S1; E1; S2; E2; :::; Sp ; Ep >

S: sample

E: Estimate

One pass polylog space # passes for polylog space = O(log logm) and m and p both O(logm)

� Maintain filters an; bn.1 � h � p/ initially

ai D �1; bi D 1
such that with high probability rel-rank - � element 2 .an; bn/

� Sample phase: find first token u 2 .an; bn/; f romSn

� Estimate phase: compute r = rel-rank (u, En)

� Update filters, setting as in binary search

True rank of u 2 Œrm �
p
l ; rmC

p
l � with high probability

Filter update

41

D
R

A
FTLecture 11

Geometric Streams and Coresets

11.1 Extent Measures and Minimum Enclosing Ball

Up to this point, we have been interested in statistical computations. Our data streams have simply been “collections

of tokens.” We did not care about any structure amongst the tokens, because we were only concerned with functions of

the token frequencies. The median and selection problems introduced some slight structure: the tokens were assumed

to have a natural ordering.

Streams represent data sets. The data points in many data sets do have natural structure. In particular, many data

sets are naturally geometric: they can be thought of as points in R
d , for some dimension d . This motivates a host of

computational geometry problems on data streams. We shall now study a simple problem of this sort, which is in fact

a representative of a broader class of problems: namely, the estimation of extent measures of point sets.

Broadly speaking, an extent measure estimates the “spread” of a collection of data points, in terms of the size of

the smallest object of a particular shape that contains the collection. Here are some examples.

� Minimum bounding box (two variants: axis-parallel or not)

� Minimum enclosing ball, or MEB

� Minimum enclosing shell (a shell being the difference of two concentric balls)

� Minimum width (i.e., min distance between two parallel hyperplanes that sandwich the data)

For this lecture, we focus on the MEB problem. Our solution will introduce the key concept of a coreset, which

forms the basis of numerous approximation algorithms in computational geometry, including data stream algorithms

for all of the above problems.

11.2 Coresets and Their Properties

The idea of a coreset was first formulated in Agarwal, Har-Peled and Varadarajan [AHPV04]; the term “coreset” was

not used in that work, but became popular later. The same authors have a survey [AHPV05] that is a great reference

on the subject, with full historical context and a plethora of applications. Our exposition will be somewhat specialized

to target the problems we are interested in.

We define a “cost function” C to be a family of functions fCP g parametrized by point sets P � R
d . For each P ,

we have a corresponding function CP WRd ! RC. We say that C is monotone if

8P � R
d 8 x 2 R

d W CQ.x/ � CP .x/ :

42

D
R

A
FT

LECTURE 11. GEOMETRIC STREAMS AND CORESETS
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

We are given a stream � of points in R
d , and we wish to compute the minimum value of the corresponding cost

function C� . To be precise, we want to estimate infx2Rd C� .x/; this will be our extent measure for � .

The minimum enclosing ball (or MEB) problem consists of finding the minimum of the cost function C� , where

C� .x/ WD max
y2�
kx � yk2 ; (11.1)

i.e., the radius of the smallest ball centered at x that encloses the points in � .

Definition 11.2.1. Fix a real number ˛ � 1, and a cost function C parametrized by point sets in R
d . We say Q is an

˛-coreset for P � R
d (with respect to C) if Q � P , and

8T � R
d 8 x 2 R

d W CQ[T .x/ � CP [T .x/ � ˛CQ[T .x/ : (11.2)

Clearly, if C is monotone, the left inequality always holds. The cost function for MEB, given by (11.1), is easily

seen to be monotone.

Our data stream algorithm for estimating MEB will work as follows. First we shall show that, for small " > 0,

under the MEB cost function, every point set P � R
d has a .1C "/-coreset of sizeO.1=".d�1/=2/. The amazing thing

is that the bound is independent of jP j. Then we shall give a data stream algorithm to compute a .1 C "/-coreset of

the input stream � , using small space. Clearly, we can estimate the MEB of � by computing the exact MEB of the

coreset.

We now give names to three useful properties of coresets. The first two are universal: they hold for all coresets,

under all cost functionsC . The third happens to hold for the specific coreset construction we shall see later (but is also

true for a large number of other coreset constructions).

Merge Property IfQ is an ˛-coreset for P andQ0 is a ˇ-coreset for P 0, thenQ[Q0 is an .˛ˇ/-coreset for P [P 0.

Reduce Property If Q is an ˛-coreset for P and R is a ˇ-coreset for Q, then R is an .˛ˇ/-coreset for P .

Disjoint Union Property IfQ;Q0 are ˛-coresets forP;P 0 respectively, andP\P 0 D ¿, thenQ[Q0 is an ˛-coreset

for P [P 0.

To repeat: every coreset satisfies the merge and reduce properties. The proof is left as an easy exercise.

11.3 A Coreset for MEB

For nonzero vectors u; v 2 R
d , let ang.u; v/ denote the angle between them, i.e.,

ang.u; v/ WD arccos
hu; vi
kuk2kvk2

;

where h�; �i is the standard inner product. We shall call a collection of vectors fu1; : : : ; ut g � R
d n f0g a �-grid if, for

every nonzero vector x 2 R
d , there is a j 2 Œt � such that ang.x; uj / � � . We think of � as being “close to zero.”

The following geometric theorem is well known; it is obvious for d D 2, but requires a careful proof for higher d .

Theorem 11.3.1. In R
d , there is a �-grid consisting of O.1=�d�1/ vectors. In particular, for R

2, this bound is

O.1=�/.

Using this, we can construct a small coreset for MEB.

Theorem 11.3.2. In d � 2 dimensions, the MEB cost function admits a .1C "/-coreset of size O.1=".d�1/=2/.

43

D
R

A
FT

LECTURE 11. GEOMETRIC STREAMS AND CORESETS
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

Proof. Let fu1; : : : ; ut g be a �-grid in R
d , for a parameter � D �."/ to be chosen later. By Theorem 11.3.1, we may

take t D O.1=�d�1/. Our proposed coreset for a point set P � R
d shall consist of the two extreme points of P along

each of the directions u1; : : : ; ut . To be precise, let P be given. We then define

Q WD
t[

iD1

farg max
x2P

hx; vi i; arg min
x2P

hx; viig :

We claim that Q is a .1C "/-coreset of P , for a suitable choice of � .

Since the MEB cost function is monotone, the left inequality in (11.2) always holds. We prove the right inequality

“by picture” (see below); making this rigorous is left as an exercise.

y
uix

z’

z

Take an arbitrary x 2 R
d and T � R

d , and let z be the farthest point from x in the set P [T . If z 2 T , then

CQ[T .x/ � kx � zk2 D CP [T .x/ :

Otherwise, we have z 2 P . By the grid property, there is a direction ui that makes an angle of at most � with Exz. Let

y be the point such that Exy is parallel to ui and kx � yk2 D kx � zk2, and let z0 be the orthogonal projection of z

onto Exy. Then, Q contains a point from P whose orthogonal projection on Exy lies to the right of z0 (by construction

of Q) and to the left of y (because z is farthest). Therefore

CQ[T .x/ � CQ.x/ � kx � z0k2 � kx � zk cos � D CP [T .x/ cos � :

Using sec � � 1C �2 (which holds for � small enough), we obtain CP [T .x/ � .1C �2/CQ[T .x/. Since this holds

for all x 2 R
d , the right inequality in (11.2) holds with ˛ D 1C �2. Since we wanted Q to be a .1C "/-coreset, we

may take � D p".
Finally, with this setting of � , we have jQj � 2t D O.1=".d�1/=2/, which completes the proof.

11.4 Data Stream Algorithm for Coreset Construction

We now turn to algorithms. Fix a monotone cost function C , for point sets in R
d , and consider the “C -minimization

problem,” i.e., the problem of estimating infx2Rd C� .x/.

Theorem 11.4.1. Suppose C admits .1 C "/-coresets of size A."/, and that these coresets have the disjoint union

property. Then the C -minimization problem has a data stream algorithm that uses space O.A."= logm/ � logm/ and

returns a .1C "/-approximation.

Proof. Our algorithm builds up a coreset for the input stream � recursively from coresets for smaller and smaller

substreams of � in a way that is strongly reminiscent of the Munro-Paterson algorithm for finding the median.

44

D
R

A
FT

LECTURE 11. GEOMETRIC STREAMS AND CORESETS
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

[the picture is not quite right]

Set ı D "= logm. We run a number of streaming algorithms in parallel, one at each “level”: we denote the level-j

algorithm by Aj . By design, Aj creates a virtual stream that is fed into Aj C1. Algorithm A0 reads � itself, placing

each incoming point into a buffer of large enough size B . When this buffer is full, it computes a .1C ı/-coreset of the

points in the buffer, sends this coreset to A1, and empties the buffer.

For j � 1, Aj receives a coreset at a time from Aj �1. It maintains up to two such coresets. Whenever it has two

of them, say P and P 0, it computes a .1C ı/-coreset of P [P 0, sends this coreset to Aj C1, and discards both P and

P 0.

Thus, A0 uses space O.B/ and, for each j � 1, Aj uses space O.A.ı//. The highest-numbered Aj that we need

is at level dlog.m=B/e. This gives an overall space bound of O.B C A."= logm/dlog.m=B/e/, by our choice of ı.

Finally, by repeatedly applying the reduce property and the disjoint union property, we see that the final coreset,

Q, computed at the highest (“root”) level is an ˛-coreset, where

˛ D .1C ı/1Cdlog.m=B/e � 1C ı logm D 1C " :

To estimate infx2Rd C� .x/, we simply output infx2Rd CQ.x/, which we can compute directly.

As a corollary, we see that we can estimate the radius of the minimum enclosing ball (MEB), in d dimensions, up

to a factor of 1C ", by a data stream algorithm that uses space

O

log.dC1/=2m

".d�1/=2

!
:

In two dimensions, this amounts to O."�1=2 log3=2m/.

45

D
R

A
FTLecture 12

Metric Streams and Clustering

In Lecture 11, we considered streams representing geometric data, and considered one class of computations on such

data: namely, estimating extent measures. The measure we studied in detail — minimum enclosing ball (MEB) — can

be thought of as follows. The center of the MEB is a crude summary of the data stream, and the radius of the MEB is

the cost of thus summarizing the stream.

Often, our data is best summarized not by a single point, but by k points (k � 1): one imagines that the data

naturally falls into k clusters, each of which can be summarized by a representative point. For the problem we study

today, these representatives will be required to come from the original data. In general, one can imagine relaxing this

requirement. At any rate, a particular clustering has an associated summarization cost which should be small if the

clusters have small extent (according to some extent measure) and large otherwise.

12.1 Metric Spaces

It turns out that clustering problems are best studied in a setting more general than the geometric one. The only aspect

of geometry that matters for this problem is that we have a notion of “distance” between two points. This is abstracted

out in the definition of a metric space, which we give below.

Definition 12.1.1. A metric space is a pair .M; d/, where M is a nonempty set (of “points”) and d WM �M ! RC

is a non-negative-valued “distance” function satisfying the following properties for all x; y; z 2 M .

1. d.x; y/ D 0 ” x D y; (identity)

2. d.x; y/ D d.y; x/; (symmetry)

3. d.x; y/ � d.x; z/C d.z; y/. (triangle inequality)

Relaxing the first property to d.x; x/ D 0 gives us a semi-metric space instead.

A familiar example of a metric space is Rn, under the distance function d.x; y/ D kx � ykkp , where p > 0. In

fact, the case p D 2 (Euclidean distance) is especially familiar. Another example should be just about as familiar to

computer scientists: take an (undirected) graph G D .V;E/, let M D V , and for u; v 2 V , define d.u; v/ to be the

length of the shortest path in G between u and v.

At any rate, in this lecture, we shall think of the data stream as consisting of points in a metric space .M; d/. The

function d is made available to us through an oracle which, when queried with two points x; y 2 M , returns the

distance d.x; y/ between them. To keep things simple, we will not bother with the issues of representing, in working

memory, points in M or distance values. Instead we will measure our space usage as the number of points and/or

distances our algorithms store.

46

D
R

A
FT

LECTURE 12. METRIC STREAMS AND CLUSTERING
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

12.2 The Cost of a Clustering: Summarization Costs

Fix a metric space .M; d/ and an integer k � 1. Given a data set � �M , we wish to cluster it into at most k clusters,

and summarize it by choosing a representative from each cluster. Suppose our set of chosen representatives is R.

If we think of the elements of � as being locations of “customers” seeking some service, and elements of R as

locations of “service stations,” then one reasonable objective to minimize is the maximum distance that a customer has

to travel to receive service. This is formalized as the k-center objective.

If we think of the elements of R as being locations of conference centers (for a multi-location video conference)

and elements of � as being home locations for the participants at this conference, another reasonable objective to

minimize is the total fuel spent in getting all participants to the conference centers. This is formalized as the k-median

objective. There is also another natural objective called k-means which is even older, is motivated by statistics and

machine learning applications, and dates back to the 1960s.

To formally define these objectives, extend the function d by defining

d.x; S/ WD min
y2S

d.x; y/ ;

for x 2 M and S � M . Then, having chosen representatives R, the best way to cluster � is to assign each point in �

to its nearest representative in R. This then gives rise to (at least) the following three natural cost measures.

�1.�;R/ WD max
x2�

d.x;R/ I .k-center/

�1.�;R/ WD
X

x2�

d.x;R/ I .k-median/

�2.�;R/ WD
X

x2�

d.x;R/2 : .k-means/

Our goal is choose R � � with jRj � k so as to minimize the cost �.�;R/. We can build these restrictions on R

into the definition of� by setting�.�;R/ D1 wheneverR does not meet the restrictions. For the rest of this lecture

we focus on the first of these costs (i.e., the k-center problem).

We shall give an efficient data stream algorithm that reads � as an input stream and produces a summaryR whose

cost is at most some constant ˛ times the cost of the best summary. Such an algorithm is called an ˛-approximation. In

fact, we shall give two such algorithms: the first will use just O.k/ space and produce a 4-approximation. The second

will improve the approximation ratio from 4 to 2C ", blowing up the space usage by aboutO.1="/.

As noted earlier, when we produce a set of representatives, R, we have in fact produced a clustering of the data

implicitly: to form the clusters, simply assign each data point to its nearest representative, breaking ties arbitrarily.

12.3 The Doubling Algorithm

We focus on the k-center problem. The following algorithm maintains a set R consisting of at most k representatives

from the input stream; these representatives will be our cluster centers. The algorithm also maintains a “threshold” �

throughout; as we shall soon see, � approximates the summarization cost �1.�;R/, which is the cost of the implied

clustering.

To analyze this algorithm, we first record a basic fact about metric spaces and the cost function �1. Then we

consider the algorithm’s workings and establish certain invariants that it maintains.

Lemma 12.3.1. Suppose x1; : : : ; xkC1 2 � � M satisfy d.xi ; xj / � t for all distinct i; j 2 Œk C 1�. Then, for all

R �M , we have �1.�;R/ � t=2.

Proof. Suppose there exists R � M with �1.�;R/ < t=2. Then jRj � k, and by the pigeonhole principle, there

exist distinct i; j 2 Œk C 1�, such that rep.xi ; R/ D rep.xj ; R/ D r , say. Now

d.xi ; xj / � d.xi ; r/C d.xj ; r/ < t=2C t=2 D t ;

47

D
R

A
FT

LECTURE 12. METRIC STREAMS AND CLUSTERING
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

Initialize :

S first k C 1 points in stream ;1

.x; y/ arg min.u;v/2S d.u; v/ ;2

� d.x; y/ ;3

R S n fxg ;4

Process x:

if minr2R d.x; r/ > 2� then5

R R [fxg ;6

while jRj > k do7

� 2� ;8

R maximal R0 � R such that 8 r ¤ s 2 R0 W d.r; s/ � � ;9

Output : R ;

where the first inequality is a triangle inequality and the second follows from �1.�;R/ < t=2. But this contradicts

the given property of fx1; : : : ; xkC1g.

Lemma 12.3.2. The doubling algorithm maintains the following invariants at the start of each call to the processing

section.

1. For all distinct r; s 2 R, we have d.r; s/ � � .

2. We have�1.�;R/ � 2� .

Proof. At the end of initialization, Invariant 1 holds by definition of x; y; and � . We also have �1.�;R/ D � at this

point, so Invariant 2 holds as well. Suppose the invariants hold after we have read an input stream � , and are just about

to process a new point x. Let us show that they continue to hold after processing x.

First, we consider the case that the if condition in Line 5 does not hold. ThenR and � do not change, so Invariant 1

continues to hold. We do change � by adding x to it. However, noting that d.x;R/ � 2� , we have

�1.� [fxg; R/ D maxf�1.�;R/; d.x;R/g � 2� ;

and so, Invariant 2 also continues to hold.

Next, suppose that the if condition in Line 5 holds. After Line 6 executes, Invariant 1 continues to hold because the

point x newly added to R satisfies its conditions. And Invariant 2 continues to hold since x is added to both � and R,

which means d.x;R/ D 0 and d.y;R/ does not increase for any y 2 � n fxg; therefore�1.�;R/ does not change.

We shall now show that the invariants are satisfied after each iteration of the while loop at Line 7. Invariant 1 may

be broken by Line 8 but is explicitly restored in Line 9. Just after Line 8, with � doubled, Invariant 2 is temporarily

strengthened to�1.�;R/ � � . Now consider the set R0 computed in Line 9. To prove that Invariant 2 holds after that

line, we need to prove that �1.�;R
0/ � 2� .

Let x 2 � be an arbitrary data point. Then d.x;R/ � �1.�;R/ � � . Let r 0 D arg minr2R d.x; r/. If r 0 2 R0,

then d.x;R0/ � d.x; r 0/ D d.x;R/ � � . Otherwise, by maximality of R0, there exists a representative s 2 R0 such

that d.r 0; s/ < � . Now

d.x;R0/ � d.x; s/ � d.x; r 0/C d.r 0; s/ < d.x;R/C � � 2� :

Thus, for all x 2 � , we have d.x;R0/ � 2� . Therefore,�1.�;R
0/ � 2� , as required.

Having established the above properties, it is now simple to analyze the doubling algorithm.

Theorem 12.3.3. The doubling algorithm uses O.k/ space and outputs a summary R whose cost is at most 4 times

the optimum.

48

D
R

A
FT

LECTURE 12. METRIC STREAMS AND CLUSTERING
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

Proof. The space bound is obvious. Let R� be an optimum summary of the input stream � , i.e., one that minimizes

�1.�;R
�/. Let OR and O� be the final values of R and � after processing � . By Lemma 12.3.2 (Invariant 2), we have

�1.�; OR/ � 2 O� .

By the same lemma (Invariant 1), every pair of distinct points in OR is at distance at least O� . Therefore, by

Lemma 12.3.1, we have �1.�;R
�/ � O�=2. Putting these together, we have �1.�; OR/ � 4�1.�;R

�/.

12.4 Metric Costs and Threshold Algorithms

The following two notions are key for our improvement to the above approximation factor.

Definition 12.4.1. A summarization cost function � is said to be metric if for all streams �; � and summaries S; T ,

we have

�.�ŒS� ı �; T / ��.�; S/ � �.� ı �; T / � �.�ŒS� ı �; T /C�.�; S/ : (12.1)

Here, �ŒS� is the stream obtained by replacing each token of � with its best representative from S .

Importantly, if we define “best representative” to be the “nearest representative,” then the k-center cost function

�1 is metric (an easy exercise). Also, because of the nature of the k-center cost function, we may as well replace

�ŒS� by S in (12.1).

Consider the following example of a stream, with ‘ı’ representing “normal” elements in the stream and ‘˝’

representing elements that have been chosen as representatives. Suppose a clustering/summarization algorithm is

running on this stream, has currently processed � and computed its summary S , and is about to process the rest of the

stream, � .

ı ˝ ı ı ˝ ı ˝ ı ıı„ ƒ‚ …
�

j ı ı ı ı ıı„ ƒ‚ …
�

The definition of a metric cost function attempts to control the “damage” that would be done if the algorithm were to

forget everything about � at this point, except for the computed summary S . We think of T as summarizing the whole

stream, � ı � .

Definition 12.4.2. Let � be a summarization cost function and let ˛ � 1 be a real number. An ˛-threshold algorithm

for � is one that takes an input a threshold t and a data stream � , and does one of the following two things.

1. Produces a summary S ; if so, we must have �.�; S/ � ˛t .
2. Fails (producing no output); if so, we must have 8T W �.�; T / > t .

The doubling algorithm contains the following simple idea for a 2-threshold algorithm for the k-center cost �1.

Maintain a set S of representatives from � that are pairwise 2t apart; if at any point we have jS j > k, then fail;

otherwise, output S . Lemma 12.3.1 guarantees that this is a 2-threshold algorithm.

12.5 Guha’s Algorithm

To describe Guha’s algorithm, we generalize the k-center problem as follows. Our task is to summarize an input

stream � , minimizing a summarization cost given by �, which

� is a metric cost; and

� has an ˛-approximate threshold algorithm A, for some ˛ � 1.

As we have just seen, k-center has both these properties.

The idea behind Guha’s algorithm is to run multiple copies of A in parallel, with geometrically increasing thresh-

olds. Occasionally a copy of A will fail; when it does, we start a new copy of A with a much higher threshold to take

over from the failed copy, using the failed copy’s summary as its initial input stream.

49

D
R

A
FT

LECTURE 12. METRIC STREAMS AND CLUSTERING
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

Here is an outline of the algorithm, which computes an .˛ C O."//-approximation of an optimal summary, for

"� ˛. Let S� denote an optimal summary, i.e., one that minimizes �.�; S�/. It should be easy to flesh this out into

complete pseudocode; we leave this as an exercise.

� Perform some initial processing to determine a lower bound, c, on �.�; S�/.

� Let p D dlog1C".˛="/e. From now on, keep p instances of A running at all times, with thresholds increasing

geometrically by factors of .1C "/. The lowest threshold is initially set to c.1C "/.
� Whenever q � p of the instances fail, start up q new instances of A using the summaries from the failed

instances to “replay” the stream so far. When an instance fails, kill all other instances with a lower threshold.

Alternatively, we can pretend that when an instance with threshold c.1 C "/j fails, its threshold is raised to

c.1C "/j Cp.

� Having processed all of � , output the summary from the instance of A that has the lowest threshold.

12.5.1 Space Bounds

In the above algorithm, let s0 denote the space required to determine the initial lower bound, c. Also, let sA denote

the space required by an instance of A; we assume that this quantity is independent of the threshold with which A is

run. Then the space required by the above algorithm is

maxfs0; psAg D O
�
s0 C

sA

"
log

˛

"

�
:

In the case of k-center, using the initialization section of the Doubling Algorithm to determine c gives us s0 D
O.k/. Furthermore, using the 2-threshold algorithm given at the end of Section 12.4, we get sA D O.k/ and ˛ D 2.

Therefore, for k-center, we have an algorithm running in space O..k="/ log.1="//.

12.5.2 The Quality of the Summary

Consider a run of Guha’s algorithm on an input stream � . Consider the instance of A that had the smallest threshold

(among the non-failed instances) when the input ended. Let t be the final threshold being used by this instance.

Suppose this instance had its threshold raised j times overall. Let �i denote portion of the stream � between the

.i � 1/th and i th raising of the threshold, and let �j C1 denote the portion after the last raising of the threshold. Then

� D �1 ı �2 ı � � � ı �j C1 ;

Let Si denote the summary computed by this instance of A after processing �i ; then Sj C1 is the final summary.

During the processing of Si , the instance was using threshold ti D t=.1C "/p.j �iC1/. Since p D dlog1C".˛="/e, we

have .1C "/p � ˛=", which gives tj � ."=˛/j �iC1t . Now, by Property 1 of an ˛-threshold algorithm, we have

�.Si�1 ı �i ; Si / � ˛."=˛/j �iC1t ; for 1 � i � j C 1 ; (12.2)

where we put S0 D ¿. Since � is metric, by (12.1), after the simplification �ŒS� D S , we have

�.�1 ı � � � ı �i ; Si / � �.Si�1 ı �i ; Si /C�.�1 ı � � � ı �i�1; Si�1/ : (12.3)

Using (12.3) repeatedly, we can bound the cost of the algorithm’s final summary as follows.

�.�; Sj C1/ D �.�1 ı � � � ı �j C1; Sj C1/ �
j C1X

iD1

�.Si�1 ı �i ; Si /

�
j C1X

iD1

˛."=˛/j �iC1t (by (12.2))

� ˛t

1X

iD0

� "
˛

�i

D .˛ CO."//t :

50

D
R

A
FT

LECTURE 12. METRIC STREAMS AND CLUSTERING
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

Meanwhile, since t was the smallest threshold for a non-failed instance of A, we know that A fails when run with

threshold t=.1C "/. By Property 2 of an ˛-threshold algorithm, we have

�.�; S�/ � t

1C " :

Strictly speaking, the above reasoning assumed that at least one instance of A failed while processing � . But notice

that, by our choice of c in Guha’s algorithm, the above inequality holds even if this isn’t true, because in that case, we

would have t D c.1C "/.
Putting the last two inequalities together, we see that�.�; Sj C1/ approximates the optimal cost �.�; S�/ within a

factor of .1C "/.˛ CO."// D ˛ CO."/.
For k-center, since we have a 2-threshold algorithm, we get an overall approximation ratio of 2CO."/.

51

D
R

A
FTLecture 13

Graph Streams: Basic Algorithms

13.1 Streams that Describe Graphs

We have been considering streams that describe data with some kind of structure, such as geometric structure, or more

generally, metric structure. Another very important class of structured large data sets is large graphs. This motivates

the study of graph algorithms that operate in streaming fashion: the input is a stream that describes a graph.

The model we shall work with in this course is that the input stream consists of tokens .u; v/ 2 Œn�� Œn�, describing

the edges of a simple1 graph G on vertex set Œn�. We assume that each edge of G appears exactly once in the stream.

There is no easy way to check that this holds, so we have to take this as a promise. The number n is known beforehand,

but m, the length of the stream and the number of edges in G, is not. Though we can consider both directed and

undirected graphs in this model, we shall only be studying problems on undirected graphs; so we may as well assume

that the tokens describe doubleton sets fu; vg.
Unfortunately, most of the interesting things we may want to compute for a graph provably �.n/ space in this

model, even allowing multiple passes over the input stream. We shall show such results when we study lower bounds,

later in the course. These include such basic questions as “Is G connected?” and even “Is there a path from u to v in

G?” where the vertices u and v are known beforehand. Thus, we have to reset our goal. Where .logn/O.1/ space used

to be the holy grail for basic data stream algorithms, for several graph problems, it is n.logn/O.1/ space. Algorithms

achieving such a space bound are sometimes called “semi-streaming” algorithms.2

13.2 The Connectedness Problem

Our first problem is: decide whether or not the input graphG, which is given by a stream of edges, is connected. This

is a Boolean problem — the answer is either 0 (meaning “no”) or 1 (meaning “yes”) — and so we require an exact

answer. We could consider randomized algorithms, but we won’t need to.

For this problem, as well as all others in this lecture, the algorithm will consist of maintaining a subgraph of G

satisfying certain conditions. For connectedness, the idea is to maintain a spanning forest, F , ofG. AsG gets updated,

F might or might not become a tree at some point. Clearly G is connected iff it does.

The algorithm below maintains F as a set of edges. The vertex set is always Œn�.

We have already argued the algorithm’s correctness. Its space usage is easily seen to be O.n logn/, since we

always have jF j � n � 1, and each of F requiresO.logn/ bits to describe.

The well known UNION-FIND data structure can be used to do the work in the processing section quickly. To test

1A simple graph is one with no loops and no parallel edges.
2The term does not really have a formal definition. Some authors would extend it to algorithms running in O.n3=2/ space, say.

52

D
R

A
FT

LECTURE 13. GRAPH STREAMS: BASIC ALGORITHMS
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

Initialize : F ¿, X 0 ;

Process fu; vg:
if :X ^ .F [ffu; vgg does not contain a cycle/ then1

F F [ffu; vgg ;2

if jF j D n � 1 then X 1 ;3

Output : X ;

acyclicity of F [ffu; vgg, we simply check if root.u/ and root.v/ are distinct in the data structure. Note that this

algorithm assumes aninsertion-only graph stream: edges only arrive and never depart from the graph. All algorithms

in this lecture will make this assumption.

13.3 The Bipartiteness Problem

A bipartite graph is one whose vertices can be partitioned into two disjoint sets, S and T say, so that every edge is

between a vertex in S and a vertex in T . Equivalently, a bipartite graph is one whose vertices can be properly colored

using two colors.3 Our next problem is to determine whether the input graphG is bipartite.

Note that being bipartite is a monotone property (just as connectedness is): that is, given a non-bipartite graph,

adding edges to it cannot make it bipartite. Therefore, once a streaming algorithm detects that the edges seen so far

make the graph non-bipartite, it can stop doing more work. Here is our proposed algorithm.

Initialize : F �, X 1 ;

Process fu; vg:
if X then1

if F [ffu; vgg does not contain a cycle then2

F F [ffu; vgg ;3

else if F [ffu; vgg contains an odd cycle then4

X 0 ;5

Output : X ;

Just like our connectedness algorithm before, this one also maintains the invariant that F is a subgraph of G and

is a forest. Therefore it uses O.n logn/ space. Its correctness is guaranteed by the following theorem.

Theorem 13.3.1. The above algorithm outputs 1 iff the input graph G is bipartite.

Proof. Suppose the algorithm outputs 0. Then G must contain an odd cycle. This odd cycle does not have a proper

2-coloring, so neither does G. ThereforeG is not bipartite.

Next, suppose the algorithm outputs 1. Let � W Œn� ! f0; 1g be a proper 2-coloring of the final forest F (such a �

clearly exists). We claim that � is also a proper 2-coloring of G, which would imply that G is bipartite and complete

the proof.

To prove the claim, consider an edge e D fu; vg of G. If e 2 F , then we already have �.u/ ¤ �.v/. Otherwise,

F [feg must contain an even cycle. Let � be the path in F obtained by deleting e from this cycle. Then � runs

between u and v and has odd length. Since every edge on � is properly colored by �, we again get �.u/ ¤ �.v/.
3A coloring is proper if, for every edge e, the endpoints of e receive distinct colors.

53

D
R

A
FT

LECTURE 13. GRAPH STREAMS: BASIC ALGORITHMS
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

13.4 Shortest Paths and Distance Estimation via Spanners

Now consider the problem of estimating the distance inG between two vertices that are revealed after the input stream

has been processed. That is, build a small data structure, in streaming fashion, that can be used to answer queries of

the form “what is the distance between x and y?”

Define dG.x; y/ to be the distance in G between vertices x and y:

dG.x; y/ D minflength.�/ W � is a path in G from x to yg ;

where the minimum of an empty set defaults to 1. The following algorithm computes an estimate Od.x; y/ for the

distance dG.x; y/. It maintains a suitable subgraphH of G which, as we shall see, satisfies the following property.

8 x; y 2 Œn� W dG.x; y/ � dH .x; y/ � t � dG.x; y/ ; (13.1)

where t � 1 is an integer constant. A subgraph H satisfying (13.1) is called a t-spanner of G. Note that the left

inequality trivially holds for every subgraphH of G.

Initialize : H ¿ ;

Process fu; vg:
if dH .u; v/ � t C 1 then1

H H [ffu; vgg ;2

Output : On query .x; y/, report Od.x; y/ D dH .x; y/ ;

We now show that the final graphH constructed by the algorithm is a t-spanner ofG. This implies that the estimate
Od.x; y/ is a t-approximation to the actual distance dG.x; y/: more precisely, it lies in the interval ŒdG.x; y/; t �
dG.x; y/�.

Pick any two distinct vertices x; y 2 Œn�. We shall show that (13.1) holds. If dG.x; y/ D 1, then clearly

dH .x; y/ D 1 as well, and we are done. Otherwise, let � be the shortest path in G from x to y, and let x D
v0; v1; v2; : : : ; vk D y be the vertices on � , in order. Then dG.x; y/ D k.

Pick an arbitrary i 2 Œk�, and let e D fvi�1; vi g. If e 2 H , then dH .vi�1; vi / D 1. Otherwise, e … H , which

means that at the time when e appeared in the input stream, we had dH 0.vi�1; vi / � t , where H 0 was the value of

H at that time. Since H 0 is a subgraph of the final H , we have dH .vi�1; vi / � t . Thus, in both cases, we have

dH .vi�1; vi / D t . By the triangle inequality, it now follows that

dH .x; y/ �
kX

iD1

dH .vi�1; vi / � tk D t � dG.x; y/ ;

which completes the proof, and hence implies the quality guarantee for the algorithm that we claimed earlier.

How much space does the algorithm use? Clearly, the answer is O.jH j logn/, for the final graph H constructed

by it. To estimate jH j, we note that, by construction, the shortest cycle in H has length at least t C 2. We can then

appeal to a result in extremal graph theory to upper bound jH j, the number of edges in H .

13.4.1 The Size of a Spanner: High-Girth Graphs

The girth .G/ of a graph G is defined to be the length of its shortest cycle; we set .G/ D 1 if G is acyclic. As

noted above, the graph H constructed by our algorithm has .H/ � t C 2. The next theorem places an upper bound

on the size of a graph with high girth (see the paper by Alon, Hoory and Linial [AHL02] and the references therein for

more precise bounds).

Theorem 13.4.1. Let n be sufficiently large. Suppose the graph G has n vertices, m edges, and .G/ � k, for an

integer k. Then

m � nC n1C1=b k�1
2

c :

54

D
R

A
FT

LECTURE 13. GRAPH STREAMS: BASIC ALGORITHMS
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

Proof. Let d D 2m=n be the average degree of G. If d � 3, then m � 3n=2 and we are done. Otherwise, let F be

the subgraph of G obtained by repeatedly deleting from G all vertices of degree less than d=2. Then F has minimum

degree at least d=2, and F is nonempty, because the total number of edges deleted is less than n � d=2 D m.

Put ` D bk�1
2
c. Clearly, .F / � .G/ � k. Therefore, for any vertex v of F , the ball in F centered at v and of

radius ` is a tree (if not, F would contain a cycle of length at most 2` � k � 1). By the minimum degree property of

F , when we root this tree at v, its branching factor is at least d=2� 1 � 1. Therefore, the tree has at least .d=2� 1/`
vertices. It follows that

n �
�
d

2
� 1

�`

D
�m
n
� 1

�`

;

which impliesm � nC n1C1=`, as required.

Using bk�1
2
c � k�2

2
, we can weaken the above bound to

m D O
�
n1C2=.k�2/

�
:

Plugging in k D t C 2, we see that the t-spanner H constructed by our algorithm has jH j D O.n1C2=t /. Therefore,

the space used by the algorithm is O.n1C2=t logn/. In particular, we can 3-approximate all distances in a graph by a

streaming algorithm in space eO.n5=3/.

55

D
R

A
FTLecture 14

Finding Maximum Matchings and Counting

Triangles

Scribe: Ranganath Kondapally

[The rest is unchecked; use at your own risk.]

14.1 The Problems

The number of graph problems that one could try to solve is huge and we will only be able to cover a small fraction.

In the previous lecture, we considered some very basic graph problems that we could solve easily in streaming fash-

ion. Now we turn to maximum matching, which is a more sophisticated problem. It is well-studied in the classical

theory of algorithm design, and Edmonds’s polynomial-time algorithm for the problem [?] remains one of the greatest

achievements in the field. For graphs described by streams, we cannot afford computations of the type performed by

Edmonds’s algorithm. But it turns out that we can achieve low space (in the semi-streaming sense) if we settle for an

approximation algorithm.

Before moving on to other topics, we shall consider the problem of counting (or estimating) the number of triangles

in a graph. This number becomes meaningful if one thinks of the input graph as a social network, for instance. It turns

out that this estimation problem is a rare example of a natural graph problem where a truly low-space (as opposed

semi-streaming) solution is possible. Moreover, a sketching algorithm is possible, which means that we can solve the

problem even in a turnstile model.

14.2 Maximum Cardinality Matching

A matching is defined to be a graph where every vertex has degree at most 1. Having fixed a vertex set, one can

think of a matching as a set of edges no two of which share a vertex. The maximum cardinality matching (or simply

maximum matching) problem, abbreviated as MCM, is to find a largest sized subgraph M of a given graph G such

that M is a matching.

Problem: We are given a graph stream (stream of edges). We want to find a maximum matching.

There are two types of maximum matchings that we will consider:

� Maximum cardinality matching(MCM) : We want to maximize the number of edges in the matching.

56

D
R

A
FT

LECTURE 14. FINDING MAXIMUM MATCHINGS AND COUNTING TRIANGLES
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

� Maximum weight matching(MWM) : In this case, edges are assigned weights and we want to maximize the sum

of weights of the edges in the matching.

“Semi-Streaming” model : aim for space QO.n/ or thereabouts [we just want to do better thanO.n2/ space usage]

Both the algorithms for MCM and MWM have the following common characteristics:

� Approximation improves with more number of passes

� Maintain a matching (in memory) of the subgraph seen so far

Input: Stream of edges of a n-vertex graph

Without space restrictions: We can compute a MCM, starting with an empty set, and try to increase the size of

matching : By finding an augmenting path.

Definition 14.2.1. Augmenting Path: Path whose edges are alternately in M and not in M , beginning and ending in

unmatched vertices.

Theorem 14.2.2. Structure theorem: If there is no augmenting path, then the matching is maximum.

So, when we can no longer find an augmenting path, the matching we have is an MCM by the above theorem.

Streaming Algorithm for MCM: Maintain a maximal matching (cannot add any more edges without violating

the matching property). In more detail:

� Initialize: M ;

� Process .u; v/: If M [f.u; v/g is a matching,M M [f.u; v/g.

� Output: jM j

Theorem 14.2.3. Let Ot denote the output of the above algorithm. If t is the size of MCM of G, then t=2 � Ot � t .

Proof. Let M � be a MCM and jM �j D t . Suppose jM j < t=2. Each edge in M “kills” (prevents from being added

toM) at most two edges in M �. Therefore, there exists an unkilled edge inM � that could have been added toM . So,

M is not maximal which is a contradiction.

State of the art algorithm for MCM: For any ", can find a matchingM such that .1�"/t � jM j � t , using constant

(depends on ") number of passes.

Outline: Find a matching, as above, in the first pass. Passes 2; 3; : : : find a “short” augmenting path (depending on

") and increase the size of the matching. Generalized version of the above structure theorem for matchings gives us

the quality guarantee.

MWM algorithm:

� Initialize: M ;

� Process .u; v/: IfM [f.u; v/g is a matching, thenM M [f.u; v/g. Else, let C D fedges ofM conflicting

with .u; v/g (note jC j D 1 or 2). If wt.u; v/ > .1C ˛/ wt.C /, then M .M � C/ [f.u; v/g.

� Output: Ow D wt.M/

Space usage of the above algorithm is O.n logn/.

Theorem 14.2.4. Let M � be a MWM. Then, k� wt.M �/ � Ow � wt.M �/ where k is a constant.

57

D
R

A
FT

LECTURE 14. FINDING MAXIMUM MATCHINGS AND COUNTING TRIANGLES
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

With respect to the above algorithm, we say that edges are “born” when we add them to M . They “die” when

they are removed from M . They “survive” if they are present in the final M . Any edge that “dies” has a well defined

“killer” (the edge whose inclusion resulted in its removal fromM).

We can associate a (“Killing”) tree with each survivor where survivor is the root, and the edge(s) that may have

been “killed” by the survivor (at most 2), are its child nodes. The subtrees under the child nodes are defined recursively.

Note: The above trees, so defined, are node disjoint (no edge belongs to more than one tree) as every edge has a

unique “killer”, if any.

Let S D fsurvivorsg, T .S/ DSe2S Œ edges in the Killing tree.e/ not including e� (descendants of e)

Claim 1: wt.T .S// � wt.S/=˛

Proof. Consider one tree, rooted at e 2 S .

wt.leveli descendants/ � wt.leveli�1 descendants/

1C ˛

Because, wt.edge/ � .1C ˛/wt.fedges killed by itg/

) wt.leveli descendants/ � wt.e/

.1C ˛/i

wt.descendants/ � wt.e/
� 1

1C ˛ C
1

.1C ˛/2 C : : :1
�

D wt.e/ 1

1C ˛
� 1

1 � 1
1C˛

�

D wt.e/ 1

1C ˛ � 1
D wt.e/

˛

wt.T .S// DPe2S wt.descendants of e/ �Pe2S
wt.e/

˛
D wt.S/

˛

Claim 2: wt.M �/ � .1C ˛/.wt.T .S//C 2 � wt.S//

Proof. Let e�
1 ; e

�
2 ; : : : be the edges inM � in the stream order. We will prove the claim by using the following charging

scheme:

� If e�
i is born, then charge wt.e�

i / to e�
i which is in T .S/ [S

� If e�
i is not born, this is because of 1 or 2 conflicting edges

– One conflicting edge, e: Note: e 2 S [T .S/. Charge wt.e�
i / to e. Since e�

i could not kill e, wt.e�
i / �

.1C ˛/wt.e/
– Two conflicting edges e1; e2: Note: e1; e2 2 T .S/ [S . Charge wt.e�

i /
wt.ej /

wt.e1/Cwt.e2/
to ej for j D 1; 2.

Since e�
i could not kill e1; e2, wt.e�

i / � .1C ˛/.wt.e1/Cwt.e2//. As before, we maintain the property

that weight charged to an edge e � .1C ˛/wt.e/.

� If an edge is killed by e0, transfer charge from e to e0. Note: wt.e/ � wt.e0/, so e0 can indeed absorb this

charge.

Edges in S may have to absorb 2.1C˛/ times their weight (conflict two edges inM �, etc). This proves the claim.

58

D
R

A
FT

LECTURE 14. FINDING MAXIMUM MATCHINGS AND COUNTING TRIANGLES
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

By claim 1&2,

wt.M �/ � .1C ˛/
�wt.S/

˛
C 2 � wt.S/

�

D .1C ˛/
�1C 2˛

˛

�
wt.S/

D
� 1
˛
C 3C 2˛

�
wt.S/

Best choice for ˛ (which minimizes the above expression) is 1=
p
2. This gives

wt.M �/

3C 2
p
2
� Ow � wt.M �/

Open question: Can we improve the above result (with a better constant)?

14.3 Triangle Counting:

Given a graph stream, we want to estimate the number of triangles in the graph. Some known results about this

problem:

� We can’t multiplicatively approximate the number of triangles in o.n2/ space.

� We can approximate the number of triangles up to some additive error

� If we are given that the number of triangles � t , then we can multiplicatively approximate it.

Given a input stream of m edges of a graph on n vertices with at least t triangles, we can compute ."; ı/-

approximation using space O. 1
"2 log 1

ı
� mn

t
/ as follows:

1. Pick an edge .u; v/ uniformly at random from the stream

2. Pick a vertex w uniformly at random from V n fu; vg

3. If .u;w/ and .v; w/ appear after .u; v/ in the stream, then outputm.n� 2/ else output 0.

It can easily be shown that the expectation of the output of the above algorithm is equal to the number of triangles.

As before we run copies of the above algorithm in parallel and take the average of their output to be the answer. Using

Chebyshev’s inequality, from the variance bound, we get the space usage to be O. 1
"2 log 1

ı
� mn

t
/.

Bar-Yossef, Kumar, Sivakumar [BKS02] algorithm: Uses space QO. 1
"2 log 1

ı
� .mn

t
/2/. Even though the space

usage of this algorithm is more than the previous one, the advantage of this algorithm is it is a “sketching” algorithm

(computes not exactly a linear transformation of the stream but we can compose “sketches” computed by the algorithm

of any two streams and it can handle edge deletions).

Algorithm: Given actual stream of edges, pretend that we are seeing virtual stream of triples fu; v;wg where

u; v;w 2 V . Specifically,

actual token Virtual token

fu; vg ! fu; v;w1g; fu; v;w2g; : : : ; fu; v;wn�2g

where fw1; w2; : : : ; wn�2g D V n fu; vg.
Let Fk be the kth frequency moment of virtual stream and

Ti D
ˇ̌
ˇ
n
fu; v;wg W u; v;w are distinct vertices and 9 exactly i edges amongst u; v;w

oˇ̌
ˇ

59

D
R

A
FT

LECTURE 14. FINDING MAXIMUM MATCHINGS AND COUNTING TRIANGLES
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

Note: T0 C T1 C T2 C T3 D
�

n
3

�
.

F2 D
X

u;v;w

.number of occurrences of fu; v;wg in the virtual stream/2

D 12 � T1 C 22 � T2 C 32 � T3

D T1 C 4T2 C 9T3

Similarly, F1 D T1 C 2T2 C 3T3 (Note: F1 D length of virtual streamD m.n � 2/) and F0 D T1 C T2 C T3.

If we had estimates for F0; F1; F2, we could compute T3 by solving the above equations. So, we need to compute

two sketches of the virtual stream, one to estimate F0 and another to estimate F2.

60

D
R

A
FTLecture 15

Communication Complexity

Scribe: Aarathi Prasad

Recall the Misra-Gries algorithm for MAJORITY problem where we found the majority element in a data stream

in 2 passes. We can show that it is not possible to find the element using 1 pass in sublinear space. Lets see how to

determine such lower bounds.

15.1 Introduction to Communication Complexity

First let’s start with an introduction to an abstract model of communication complexity.

There are two parties to this communication “game,” namely Alice and Bob. Alice’s input is x 2 X and Bob’s input

is y 2 Y . X and Y are known before the problem is specified. Now we want to compute f .x; y/, f W X � Y ! Z,

when X D Y D Œn�; Z D f0; 1g. For example,

f .x; y/ D .x C y/ mod 2 D x mod 2C y mod 2

In this case, Alice doesn’t have to send the whole input x, using dlogne bits; instead she can send x mod 2 to Bob using

just 1 bit! Bob calculates y mod2 and uses Alice’s message to find f(x,y). However, only Bob knows the answer. Bob

can choose to send the result to Alice, but in this model, it is not required that all the players should know the answer.

Note that we are not concerned about the memory usage, but we try to minimise the number of communication steps

between Alice and Bob.

15.1.1 EQUALITY problem

This problem finds its application in image comparisons.

Given X D Y D f0; 1gn ; Z D f0; 1gn

EQ.x; y/ D
�
1 if x = y

0 otherwise

So in this case, communication between Alice and Bob requires n bits. For now, we consider a one-way transmission,

ie messages are sent only in one direction. For symmetric functions, it doesn’t matter who sends the message to whom.

Theorem 15.1.1. Alice must send Bob n bits, in order to solve EQ in a one-way model.

D!.EQ/ � n

61

D
R

A
FT

LECTURE 15. COMMUNICATION COMPLEXITY
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

Proof : Suppose Alice sends< n bits to Bob. Then the number of different messages she might send � 21C 22C
::::2n�1 D 2n � 2. But Alice can have upto 2n inputs.

Let’s recall the Pigeonhole principle. There are n pigeons,m holes and m< n. This implies that � 2 pigeons have

to go into one hole.

Using the pigeonhole principle, there exists two different inputs x ¤ x0 , such that Alice sends the same message

˛ on inputs x and x0.

Let P.x; y/ be Bob’s output, when input is .x; y/. We should have

P.x; y/ D EQ.x; y/ (15.1)

Since P.x; y/ is determined fully by Alice’s message on x and Bob’s input y, using equation 13.1, we have

P.x; y/ D EQ.x; x/ D 1 (15.2)

P.x0; y/ D EQ.x0; x/ D 0 (15.3)

However since Bob sees the message ˛ from Alice for both inputs x and x0, P.x; y/ D P.x0; y/, which is a contra-

diction.

Hence the solution to the EQUALITY problem is for Alice to send all the 2n messages using n bits.

Theorem 15.1.2. Using randomness, we can compute EQ function with an error probability � 1=3, in the one-way

model, with message size O(logn)

R!.EQ/ D O.logn/

Proof: Consider the following protocol.

� Alice picks a random prime p 2 Œn2; 2n2�

� Alice sends Bob (p, x modp), using O(logn) bits

� Bob checks if y modp = x modp, outputs 1 if true and 0 otherwise

If EQ.x; y/ = 1, output is correct. If EQ.x; y/ = 0, then its an error if and only if (x-y) modp = 0.

Remember that x and y are fixed and p is random. Also we should choose a large prime for p, since if we choose

p = 2, there is high error probability.

Let x � y = p1p2:::pt be the prime factorisation of x � y, where p1; p2; :::pt need not be distinct. For the output

EQ.x; y/ to be incorrect, p 2 fp1; p2::pt g.

P rŒerror� � t

no of primes in Œn2; 2n2�
(15.4)

x � y � 2n; p1p2:::pt � 2t) t � n

Using prime number theorem,

Number of primes in Œ1::N � � N

lnN

62

D
R

A
FT

LECTURE 15. COMMUNICATION COMPLEXITY
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

Number of primes in Œn2; 2n2� � 2n2

ln 2n2
� n2

ln n2

D 2n2

ln 2 C 2 ln n
� n2

2 ln n

� 1:9 n2

2 ln n
� n2

2 ln n

D 0:9 n2

2 ln n

Using estimates in equation 3, P rŒerror� � n

0:9 n2 = 2 ln n

D 2 ln n

0:9 n

� 1

3

15.2 Communication complexity in Streaming Algorithms

Now lets consider communication complexity models in streaming algorithms. Here the stream is cut into two parts,

one part is with Alice and the other with Bob. We claim that if we can solve the underlying problem, we can solve the

communication problem as well.

Suppose 9 a deterministic or randomised streaming algorithm to compute f .x; y/ using s bits of memory, then

D!.f / � s OR R!.f / � s

Alice runs the algorithm on her part of the stream, sends the values in memory (s bits) to Bob, and he uses these

values, along with his part of the stream, to compute the output.

Note one-pass streaming algorithm implies a one-way communication. So a

p pass streaming algo)
�

p messages from A ! B

p -1 messages from B ! A

Hence we can generalize that a communication lower bound proven for a fairly abstract problem can be reduced to a

streaming lower bound. ie from a streaming lower bound, we can reach the lower bound for a communication problem.

15.2.1 INDEX problem

Given X D f0; 1gn; Y D Œn�; Z D f0; 1g;

INDEX.x; j / D xj D j th bit of x

e.g., INDEX.1100101; 3/D 0

Theorem 15.2.1.

D!.INDEX/ � n

Proof Can be proved using Pigeonhole Principle.

Say we have a MAJORITY streaming algorithm using s space. We are given an INDEX instance, Alice’s input :

63

D
R

A
FT

LECTURE 15. COMMUNICATION COMPLEXITY
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

1100101 and Bob’s input : 3. The scheme followed is

Given an instance .x; j / of INDEX, we construct streams �; � of lengthm each as follows. Let A be the streaming

algorithm, then

� ALICE’s input x is mapped to a1a2:::am , where ai D 2.i � 1/C xi

� BOB’s input j is mapped to bb:::b, b occursm times, where b = 2(j-1)

� Alice and Bob communicate by running A on �:�

� If A says “no majority”, then output 1, else output 0.

1-pass MAJORITY algorithm requires �.m/ space. By theorem 13.2.1, communication uses � m, s � m = 1/2

stream length. We also have R!.INDEX/ D �.m/.

64

D
R

A
FTLecture 16

Reductions

Scribe: Priya Natarajan

Recap and an important point: Last time we saw that 1-pass MAJORITY requires space �.n/ by reducing from

INDEX. We say �.n/, but in our streaming notation, m is the stream length and n is the size of the universe. We

produced a stream � ı � , where m D 2N and n D 2N , and we concluded that the space s must be �.N/. Looks

like s D �.m/ or s D �.n/ but we have proven the lower bound only for the worst of the two. So, in fact, we

have s D �.minfm; ng/. For MAJORITY, we could say �.n/ because m and n were about the same. We won’t be

explicit about this point later, but most of our lower bounds have�.minfm; ng/ form.

Today, we will see some communication lower bounds. But first, here is a small table of results:

f D!.f / R!
1=3
.f / D.f / R1=3.f /

INDEX � n �.n/ � d log ne � d log ne
EQUALITY � n O.log n/ � n O.log n/

DISJOINTNESS �.n/ �.n/ �.n/ �.n/

Table 16.1: In this table, we will either prove or have already seen almost all results except R!
1=3
.EQ/. Also, we will

only prove a special case of DISJ.

We will start by proving D(EQ) � n. In order to prove this, however, we first have to prove an important property

about deterministic communication protocols.

Definition 16.0.2. In two-way communication, suppose Alice first sends message ˛1 to Bob to which Bob responds

with message ˇ1. Then, say Alice sends message ˛2 to Bob who responds with message ˇ2, and so on. Then, the

sequence of messages< ˛1; ˇ1; ˛2; ˇ2; : : : > is known as the transcript of the deterministic communication protocol.

Theorem 16.0.3. Rectangle property of deterministic communication protocol: Let P be a deterministic communi-

cation protocol, and let X and Y be Alice’s and Bob’s input spaces. Let transp.x; y/ be the transcript of P on input

.x; y/ 2 X � Y . Then, if transp.x1; y1/ = transp.x2; y2/ = � (say); then transp.x1; y2/ = transp.x2; y1/ = � .

Proof : We will prove the result by induction.

Let � D< ˛1; ˇ1; ˛2; ˇ2; : : : >. Let � 0 D< ˛0
1; ˇ

0
1; ˛

0
2; ˇ

0
2; : : : > be transp.x2; y1/.

Since Alice’s input does not change between .x2; y1/ and .x2; y2/, we have ˛0
1 D ˛1.

Induction hypothesis: � and � 0 agree on the first j messages.

Case 1: j is odd = 2k � 1 .k � 1/ (say).

So, we have: ˛0
1 D ˛1; ˛

0
2 D ˛2; : : : ; ˛

0
k�1
D ˛k�1; ˛

0
k
D ˛k and ˇ0

1 D ˇ1; ˇ
0
2 D ˇ2; : : : ; ˇ

0
k�1
D ˇk�1; ˇ

0
k
D‹.

65

D
R

A
FT

LECTURE 16. REDUCTIONS
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

Now, ˇ0
k

depends on Bob’s input which does not change between .x1; y1/ and .x2; y1/, and it depends on the

transcript so far which also does not change. So, ˇ0
k
D ˇk .

Case 2: j is even = 2k .k � 1/ (say).

The proof for this case is similar to that of case 1, except we consider inputs .x2; y2/ and .x2; y1/.

By induction, we have the rectangle property.

Now that we have the rectangle property at hand, we can proceed to prove:

Theorem 16.0.4. D(EQ) � n.

Proof : Let P be a deterministic communication protocol solving EQ. We will prove that P has at least 2n different

transcripts which will imply that P sends � n bits.

Suppose transp.x1; x1/ = transp.x2; x2/ = � , where x1 ¤ x2.

Then, by rectangle property:

transp.x1; x2/ = �

) output on .x1; x1/ = output on .x1; x2/

) 1 = EQ.x1; x1/ = EQ.x1; x2/ = 0. [Contradiction]

This means that the 2n possible inputs lead to 2n distinct transcripts.

Note: General communication corresponds to multi-pass streaming.

Theorem 16.0.5. Any deterministic streaming algorithm for DISTINCT-ELEMENTS, i.e., F0 must use space�.n=p/,

where p is the number of passes.

Before seeing the proof, let us make note of a couple of points.

Why �.n=p/? Over p passes, Alice and Bob exchange 2p � 1 messages; if the size of each message (i.e., space

usage) is s bits, then:

total communication cost = s.2p � 1/
) total communication cost � 2ps.

If we can prove that the total communication must be at least n bits, then we have:

n � 2ps
) s � n=2p
i.e., s D �.n=p/
Proof Idea: We will reduce from EQ. Suppose Alice’s input x 2 f0; 1gn is f100110g, and Bob’s input y 2 f0; 1gn

is f110110g. Using her input, Alice produces the stream � D< 1; 2; 4; 7; 9; 10 > (i.e., �i D 2.i � 1/C xi). Similarly,

Bob produces the stream � D< 1; 3; 4; 7; 9; 10 >.

Suppose Alice’s string disagrees in d places with Bob’s string (i.e., Hamming distance.x; y/ = d). Then,F0.� ı �/ D nC d .

If � and � are equal, then d = 0, i.e., EQ.x; y/ D 1, d D 0.

So, EQ.x; y/ D 1) d D 0) F0.� ı �/ D n
EQ.x; y/ D 0) d � 1) F0.� ı �/ � nC 1

However, note that unless theF0 algorithm is exact, it is very difficult to differentiate between n and nC .a smal l d/.
As we proved earlier, we can only get an approximate value for F0, so we would like that if x ¤ y, then Hamming

distance between x and y be noticeably large. In order to get this large Hamming distance, we will first run Alice’s

and Bob’s input through an encoder that guarantees a certain distance. For example, running Alice’s n-bit input x

through an encoder might lead to a 3n-bit string c.x/ (similarly, y and c.y/ for Bob), and the encoder might guarantee

that x ¤ y) Hamming distance between c.x/ and c.y/ � 3n=100 (say).

Proof : Reduction from EQ.

Suppose Alice and Bob have inputs x; y 2 f0; 1gn. Alice computes x̃D C.x/, where C is an error-correcting

code with encoded length 3n, and distance � 3n=100. Then, she produces a stream � D< �1; �2; : : : ; �3n >, where

�i D 2.i � 1/C x̃i . Similarly, Bob has y, he computes ỹD C.y/ and produces a stream � where �i D 2.i � 1/C ỹi .

Now, they simulate F0 streaming algorithm to estimate F0.� ı �/.

66

D
R

A
FT

LECTURE 16. REDUCTIONS
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

If x D y, EQ.x; y/ D 1, then x̃ = ỹ, so F0 D 3n.

If x ¤ y, EQ.x; y/ D 0, then Hamming(x̃, ỹ) � 3n=100, so F0 � .3nC 3n=100/. That is F0 � 3n � 1:01.

If F0 algorithm gives a .1 ˙ "/-approximation with " < 0:005, then we can distinguish between the above two

situations and hence solve EQ. But D(EQ) � n, therefore,D.F0/ D �.n=p/ with p passes.

67

D
R

A
FTLecture 17

Set Disjointness and Multi-Pass Lower Bounds

Scribe: Zhenghui Wang

17.1 Communication Complexity of DISJ

Alice has a n-bit string x and Bob has a n-bit string y, where x; y 2 Œ0; 1�n. x; y represent subset X; Y of Œn�

respectively. x; y are named characteristic vector or bitmask, i.e.

xj D
(
1 if j 2 X
0 otherwise

Compute function

DISJ.x; y/ D
(
1 if X \ Y ¤ ;
0 otherwise

Theorem 17.1.1. R.DISJ/ D �.n/

Proof. We prove the special case: R!.DISJ / D �.n/ by reduction from INDEX. Given an instance .x; j / of

INDEX, we create an instance .x0; y0/ of DISJ, where x0 D x; y0 is a vector s.t.

y0
i D

(
0 if i ¤ j
1 otherwise

By construction, x0 \ y0 ¤ ; , xj D 1 i.e. DISJ.x0; y0/ DINDEX.x0; y0/. Thus, a one way protocol of DISJ

implies a one way protocol of INDEX with the same communication cost. But R!.INDEX/ D �.n/, so we have

R!.DISJ/ D �.n/.

The general case is proved by [Kalya], [Razborov ’90] [Bar Yossof-Jayarom Kauor ’02].

17.2 ST-Connectivity

ST-connectivity: Given an input graph stream, are two specific vertices s and t connected?

Theorem 17.2.1. Solving ST-CONN requires�.n/ space. (semi-streaming is necessary.)

68

D
R

A
FT

LECTURE 17. SET DISJOINTNESS AND MULTI-PASS LOWER BOUNDS
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

Proof. By reduction from DISJ.

Let .x; y/ be an instance of DISJ. Construct an instance of CONN on a graph with vertex set fs; t; v1; v2; � � � ; vn�2g.
So Alice gets set of edges A D f.s; v/ W v 2 xg and Bob gets set of edges B D f.v; t/ W v 2 yg.

Vertex s and t are connected in the resulting graph

, 9 a length-two path from s to t

, 9v s.t. .s; v/ 2 A and .v; t/ 2 B
, 9v 2 x \ y
, DISJ.x; y/ D 1

Reducing this communication problem to a streaming problem, we have the required space in a p pass algorithm is

�.n=p/.

17.3 Perfect Matching Problem

Given a graph on n vertices, does it have a perfect matching i.e. a matching of size n=2?

Theorem 17.3.1. One pass streaming algorithm for this problem requires �.n2/ space.

Proof. Reduction from INDEX.

Suppose we have an instance .x; k/ of INDEX where x 2 f0; 1gN 2

; k 2 ŒN 2�. Construct graph G, where VG D
[N

iD1fai ; bi ; ui ; vig and EG D EA [EB . Edges in EA and EB are introduced by Alice and Bob respectively.

EA D f.ui ; vj W xf .i;j /D1/g; where f is a 1-1 correspondence between ŒN � � ŒN �! ŒN 2�

e.g f .i; j / D .N � 1/i C j

EB D f.al ; ul W l ¤ i/g [f.bl ; vl W l ¤ j /g [f.ai ; bj /g; where i; j 2 ŒN � are s.t. f .i; j / D k

By construction,

G has a perfect matching

, .ui ; vj / 2 EG

, xk D 1
, INDEX.x; k/ D 1

Thus, the space usage of a streaming algorithm for perfect matching must be �.N 2/. The number of vertices in

instance constructed is n D 4N . So the lower bound in term of n is �..n
4
/2/ D �.n2/.

17.4 Multiparty Set Disjointness (DISJn;t)

Suppose there are t player and each player Ai has a n-bit string xi 2 f0; 1gn. Define

DISJn;t D
(
1 if

Sn
iD1 xi ¤ ;

0 otherwise

Theorem 17.4.1 (C.-Khot-Sun ’03/Granmeicr ’08). R.DISJn;t / D �.n=t/

Theorem 17.4.2. Approximating 1-pass Fk with randomization allowed requires �.m1�2=k/ space.

69

D
R

A
FT

LECTURE 17. SET DISJOINTNESS AND MULTI-PASS LOWER BOUNDS
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

Proof. Given a DISJ instance .x1; x2; � � � ; xt / s.t. every column of matrix

0
BB@

x1

x2

� � �
xt

1
CCA must contain 0,1 or t ones and at

most one column can have t ones. Player Ai converts xi into a stream �i D< �1; �2; � � � > such that �j 2 �i iff.

xij D 1. Simulate the Fk algorithm on stream � D �1 ı �2 ı � � � ı �t . The frequency vector of this stream is either

0; 1 only (if DISJn;t D 0) or 0; 1 and a single t(If DISJn;t D 1). In the first case, Fk � n while Fk � tk in the second

case.

Choose t s.t. tk > 2m, then 2-approximation to Fk can distinguish these two situations. Thus, The memory usage is

�.m=t2/ D �. m

.m1=k /2 / D �.m1�2=k/, for stream lengthm � nt andm D �.1=t/.

70

D
R

A
FT

Bibliography

[AHL02] Noga Alon, Shlomo Hoory, and Nathan Linial. The moore bound for irregular graphs. Graphs and

Combinatorics, 18(1):53–57, 2002.

[AHPV04] Pankaj K. Agarwal, Sariel Har-Peled, and Kasturi R. Varadarajan. Approximating extent measures of

points. J. ACM, 51(4):606–635, 2004.

[AHPV05] Pankaj K. Agarwal, Sariel Har-Peled, and Kasturi R. Varadara-

jan. Geometric approximation via coresets. Available online at

http://valis.cs.uiuc.edu/˜sariel/research/papers/04/survey/survey.pdf,

2005.

[AKO11] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Streaming algorithms via precision sam-

pling. In Proc. 52nd Annual IEEE Symposium on Foundations of Computer Science, pages 363–372,

2011.

[AMS99] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the frequency

moments. J. Comput. Syst. Sci., 58(1):137–147, 1999. Preliminary version in Proc. 28th Annual ACM

Symposium on the Theory of Computing, pages 20–29, 1996.

[BGKS06] Lakshminath Bhuvanagiri, Sumit Ganguly, Deepanjan Kesh, and Chandan Saha. Simpler algorithm for

estimating frequency moments of data streams. In Proc. 17th Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 708–713, 2006.

[BJKC04] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan. Counting distinct elements

in a data stream. In Proc. 6th International Workshop on Randomization and Approximation Techniques

in Computer Science, pages 128–137, 2004.

[BKS02] Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. Reductions in streaming algorithms, with an application

to counting triangles in graphs. In Proc. 13th Annual ACM-SIAM Symposium on Discrete Algorithms,

pages 623–632, 2002.

[CCFC04] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data streams. Theor.

Comput. Sci., 312(1):3–15, 2004.

[CM05] Graham Cormode and S. Muthukrishnan. An improved data stream summary: the count-min sketch and

its applications. J. Alg., 55(1):58–75, 2005. Preliminary version in Proc. 6th Latin American Theoretical

Informatics Symposium, pages 29–38, 2004.

[CMS76] J. M. Chambers, C. L. Mallows, and B. W. Stuck. A method for simulating stable random variables. J.

Amer. Stat. Assoc., 71(354):340–344, 1976.

[FM85] Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base applications. J.

Comput. Syst. Sci., 31(2):182–209, 1985.

71

http://valis.cs.uiuc.edu/~sariel/research/papers/04/survey/survey.pdf

D
R

A
FT

BIBLIOGRAPHY
CS 49, Fall 2011, Dartmouth College

Data Stream Algorithms

[FM88] Peter Frankl and Hiroshi Maehara. The Johnson-Lindenstrauss lemma and the sphericity of some graphs.

J. Combin. Theory Ser. B, 44(3):355–362, 1988.

[Ind06] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream computation. J.

ACM, 53(3):307–323, 2006.

[IW05] Piotr Indyk and David P. Woodruff. Optimal approximations of the frequency moments of data streams.

In Proc. 37th Annual ACM Symposium on the Theory of Computing, pages 202–208, 2005.

[JL84] W. B. Johnson and J. Lindenstrauss. Extensions of Lipschitz mapping into Hilbert space. Contemp. Math.,

26:189–206, 1984.

[Lév54] Paul Lévy. Théorie de l’addition des variables aléatoires. Jacques Gabay, 2e edition, 1954.

[MG82] Jayadev Misra and David Gries. Finding repeated elements. Sci. Comput. Program., 2(2):143–152, 1982.

[MP80] J. Ian Munro and Mike Paterson. Selection and sorting with limited storage. TCS, 12:315–323, 1980.

Preliminary version in Proc. 19th Annual IEEE Symposium on Foundations of Computer Science, pages

253–258, 1978.

[Nis90] Noam Nisan. Pseudorandom generators for space-bounded computation. In Proc. 22nd Annual ACM

Symposium on the Theory of Computing, pages 204–212, 1990.

72

	Preliminaries: The Data Stream Model
	The Basic Setup
	The Quality of an Algorithm's Answer
	Variations of the Basic Setup

	Finding Frequent Items Deterministically
	The Problem
	The Misra-Gries Algorithm
	Analysis of the Algorithm

	Estimating the Number of Distinct Elements
	The Problem
	The Algorithm
	The Quality of the Algorithm's Estimate
	The Median Trick

	A Better Estimate for Distinct Elements
	The Problem
	The BJKST Algorithm
	Analysis: Space Complexity
	Analysis: The Quality of the Estimate
	Optimality

	Finding Frequent Items via Sketching
	The Problem
	Sketches and Linear Sketches
	The Count Sketch
	The Quality of the Basic Sketch's Estimate
	The Final Sketch

	The Count-Min Sketch
	The Quality of the Algorithm's Estimate

	Comparison of Frequency Estimation Methods

	Estimating Frequency Moments
	Background and Motivation
	The AMS Estimator for Fk
	Analysis of the Basic Estimator
	The Median-of-Means Improvement

	The Tug-of-War Sketch
	The Basic Sketch
	The Quality of the Estimate

	The Final Sketch
	A Geometric Interpretation

	Estimating Norms Using Stable Distributions
	A Different 2 Algorithm
	Stable Distributions
	The Median of a Distribution and its Estimation
	The Accuracy of the Estimate
	Annoying Technical Details
	An Open Question

	Estimating Norms via Precision Sampling
	The Basic Idea

	Finding the Median
	The Problem
	Munro-Paterson Algorithm (1980)

	Approximate Selection
	Two approaches
	Greenwald - Khanna Algorithm
	Guha-McGregor Algorithm

	Geometric Streams and Coresets
	Extent Measures and Minimum Enclosing Ball
	Coresets and Their Properties
	A Coreset for MEB
	Data Stream Algorithm for Coreset Construction

	Metric Streams and Clustering
	Metric Spaces
	The Cost of a Clustering: Summarization Costs
	The Doubling Algorithm
	Metric Costs and Threshold Algorithms
	Guha's Algorithm
	Space Bounds
	The Quality of the Summary

	Graph Streams: Basic Algorithms
	Streams that Describe Graphs
	The Connectedness Problem
	The Bipartiteness Problem
	Shortest Paths and Distance Estimation via Spanners
	The Size of a Spanner: High-Girth Graphs

	Finding Maximum Matchings and Counting Triangles
	The Problems
	Maximum Cardinality Matching
	Triangle Counting:

	Communication Complexity
	Introduction to Communication Complexity
	EQUALITY problem

	Communication complexity in Streaming Algorithms
	INDEX problem

	Reductions
	Set Disjointness and Multi-Pass Lower Bounds
	Communication Complexity of DISJ
	ST-Connectivity
	Perfect Matching Problem
	Multiparty Set Disjointness (DISJn,t)

