
LOGLOG COUNTING OF LARGE CARDINALITIESMARIANNE DURAND AND PHILIPPE FLAJOLETAbstra
t. Using an auxiliary memory smaller than the size of this abstra
t,the LogLog algorithm makes it possible to estimate in a single pass and withina few per
ents the number of di�erent words in the whole of Shakespeare'sworks. In general the LogLog algorithm makes use of m \small bytes" ofauxiliary memory in order to estimate in a single pass the number of distin
telements (the \
ardinality") in a �le, and it does so with an a

ura
y thatis of the order of 1=pm. The \small bytes" to be used in order to 
ount
ardinalities till Nmax 
omprise about log logNmax bits, so that 
ardinalitieswell in the range of billions 
an be determined using one or two kilobytes ofmemory only. The basi
 version of the LogLog algorithm is validated by a
omplete analysis. An optimized version, super{LogLog, is also engineeredand tested on real-life data. The algorithm parallelizes optimally.1. Introdu
tionThe problem addressed in this note is that of determining the number of distin
telements, also 
alled the 
ardinality, of a large �le. This problem arises in severalareas of data-mining, database query optimization, and the analysis of traÆ
 inrouters. In su
h 
ontexts, the data may be either too large to �t at on
e in 
orememory or even too massive to be stored, being a huge 
ontinuous 
ow of datapa
kets. For instan
e, Estan et al. [3℄ report tra
es of pa
ket headers, produ
ed ata rate of 0.5GB per hour of 
ompressed data (!), whi
h were 
olle
ted while tryingto tra
e a \worm" (Code Red, August 1 to 12, 2001), and on whi
h it was ne
essaryto 
ount the number of distin
t sour
es passing through the link. We propose herethe LogLog algorithm that estimates 
ardinalities using only a very small amountof auxiliary memory, namely m memory units, where a memory unit, a \smallbyte", 
omprises 
lose to log logNmax bits, with Nmax an a priori upperbound on
ardinalities. The estimate is (in the sense of mean values) asymptoti
ally unbiased ;the relative a

ura
y of the estimate (measured by a standard deviation) is 
loseto 1:05=pm for our best version of the algorithm, Super{LogLog. For instan
e,estimating 
ardinalities till Nmax = 227 (a hundred million di�erent re
ords) 
anbe a
hieved with m = 2048 memory units of 5 bits ea
h, whi
h 
orresponds to 1.28kilobytes of auxiliary storage in total, the error observed being typi
ally less than2.5%. Sin
e the algorithm operates in
rementally and in a single pass it 
an beapplied to data 
ows for whi
h it provides on-line estimates available at any giventime. Advantage 
an be taken of the low memory 
onsumption in order to gathersimultaneously a very large number of statisti
s on huge heterogeneous data sets.The LogLog algorithm 
an also be fully distributed or parallelized, with optimumspeed-up andminimal interpro
ess 
ommuni
ation. Finally, an embedded hardwaredesign would involve stri
tly minimal resour
es.Motivations. A traditional appli
ation of 
ardinality estimates is databasequery optimization. There, a 
omplex query typi
ally involves a variety of set-theoreti
 operations as well as proje
tions, joints, and so on. In this 
ontext,knowing \for free" 
ardinalities of asso
iated sets provides a valuable guide for se-le
ting an eÆ
ient pro
essing strategy best suited to the data at hand. Even aDate: April 1, 2003. Submitted to the European Symposium on Algorithms, Esa'2003.1



2 MARIANNE DURAND AND PHILIPPE FLAJOLETproblem as simple as merging two large �les with dupli
ates 
an be treated by var-ious 
ombinations of sorting, straight merging, and �ltering out dupli
ates (in oneor both of the �les); the 
ost fun
tion of ea
h possible strategy is then determinedby the number of re
ords as well as by the 
ardinality of ea
h �le. Probabilisti
estimation algorithms also �nd a use in large data re
ording and warehousing en-vironments. There, the goal is to provide an approximate response in time that isorders-of-magnitude less than what 
omputing an exa
t answer would require: seethe des
ription of the Aqua Proje
t by Gibbons et al. in [8℄.The analysis of traÆ
 in routers, as already mentioned, bene�ts greatly of 
ardi-nality estimators|this is lu
idly exposed by Estan et al. in [2, 3℄. Certain types ofatta
ks (e.g., \denial of servi
e" and \port s
ans") are betrayed by alarmingly high
ounts of 
ertain 
hara
teristi
 events at the level of routers. In su
h situations,there is usually not enough resour
e available to store and sear
h on-line the verylarge number of events that take pla
e even in a relatively small time window.Probabilisti
 
ounting algorithms 
an also be used within other algorithms when-ever the �nal answer is the 
ardinality of a large set and a small toleran
e on thequality of the answer is a

eptable. Palmer et al. [8℄ des
ribe the use of su
h algo-rithms in an extensive 
onne
tivity analysis of the internet topology. For instan
e,one of the tasks needed there is to determine, for ea
h distan
e h, the number ofpairs of nodes that are at distan
e at most h in the internet graph. Sin
e the graphstudied by [8℄ has 
lose to 300,000 nodes, the number of pairs to be 
onsidered iswell over 1010, upon whi
h 
ostly list operations must be performed by exa
t algo-rithms. In 
ontrast an algorithm that would be, in the abstra
t, suboptimal 
anbe 
oupled with adapted probabilisti
 
ounting te
hniques and still provide reliableestimates. In this way, the authors of [8℄ were able to extra
t extensive metri
 in-formation on the internet graph by keeping a redu
ed 
olle
tion of data that residein 
ore memory. They report a redu
tion in run-time by a fa
tor of more than 400.Algorithms. The LogLog algorithm is probabilisti
. Like in many similaralgorithms, the �rst idea is to appeal to a hashing fun
tion in order to randomizedata and bring them to a form that resembles random (uniform, independent)binary data. It is this hashed data set that is distilled into 
ardinality estimatesby the algorithm. Various algorithms perform various tests on the hashed dataset, then 
ompare \observables" to what probabilisti
 analysis predi
ts, and �nally\dedu
e" a plausible value of the parameter of interest. In the 
ase of LogLog
ounting, the observable should only be linked to 
ardinality, and hen
e be totallyindependent of the nature of repli
ations and the ordering of data present in the �le,on whi
h no information at all is available. (Depending on 
ontext, 
ollisions dueto hashing 
an either be negle
ted or their e�e
t 
an be estimated and 
orre
ted.)Whang, Zanden, and Taylor have developed Linear Counting, whi
h distributes(hashed) values into bu
kets and only keeps a bitmap indi
ating whi
h bu
ketsare hit. Then observing the number of hits in the table leads to an estimate of
ardinality. Sin
e the number of bu
kets should not be mu
h smaller than the 
ar-dinalities to be estimated (say, � Nmax=10), the algorithm has spa
e 
omplexitythat is O(Nmax) (typi
ally, Nmax=10 bits of storage). The linear spa
e is a draw-ba
k whenever large 
ardinalities, multiple 
ounts, or limited hardware are the rule.Estan, Varghese, and Fisk [3℄ have devised a multis
ale version of this prin
iple,where a hierar
hi
al 
olle
tion of small windows on the bitmap is kept. From simu-lation data, their Multiresolution Bitmap algorithm appears to be about 20% more
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ondenses thewhole of Shakespeare's works to a table of 256 \small bytes" of 4bits ea
h. The estimate of the number of distin
t words in this runis nÆ = 30897 (the true answer is n = 28239), whi
h represents arelative error of +9.4%.a

urate than Probabilisti
 Counting (dis
ussed below) when the same amount ofmemory is used. The best algorithm of [3℄ for 
ows in routers, Adaptive Bitmap, isreported to be about 3 times more eÆ
ient than either Probabilisti
 Counting orMultiresolution Bitmap, but is has the disadvantage of not being universal, as itmakes de�nite statisti
al assumptions (\stationarity") regarding the data input tothe algorithm. (We re
ommend the thorough engineering dis
ussion of [3℄.)Closer to us is the Probabilisti
 Counting algorithm of Flajolet and Martin [7℄.This uses a 
ertain observable that has ex
ellent statisti
al properties but is rel-atively 
ostly to maintain in terms of storage. Indeed, Probabilisti
 Counting es-timates 
ardinalities with an error 
lose to 0:78=pm given a table of m \words",ea
h of size about log2Nmax.Yet another possible idea is sampling. One may may use any �lter on hashedvalues with sele
tivity p � 1, store exa
tly and without dupli
ates the data items�ltered and return as estimate 1=p times the 
orresponding 
ardinality. Wegner'sAdaptive Sampling (des
ribed and analysed in [5℄) is an elegant way to maintaindynami
ally varying values of p. For m \words" of memory (where here \word"refers to the spa
e needed by a data item), the a

ura
y is about 1:20=pm, whi
his about 50% less eÆ
ient than Probabilisti
 Counting.An insightful 
omplexity-theoreti
 dis
ussion of approximate 
ounting is pro-vided by Alon, Matias, and Szegedy in [1℄. The authors dis
uss a 
lass of \frequen
y{moments" statisti
s whi
h in
ludes ours (as their F0 statisti
s). Our LogLog Al-gorithm has prin
iples that evoke some of those found in the interse
tion of [1℄ andthe earlier [7℄, but 
ontrary to [1℄, we develop here a 
omplete eminently pra
ti
alalgorithmi
 solution and provide a very pre
ise analysis, in
luding bias 
orre
tion,error and risk evaluation, as well as 
omplete dimensioning rules.We estimate that our LogLog algorithm outperforms the earlier Probabilisti
Counting algorithm and the similarly performing Multiresolution Bitmap of [3℄ bya fa
tor of 3 at least as it repla
es \words" (of 16 to 32 bits) by \small bytes" of typ-i
ally 5 bits ea
h, while being based on an observable that has only slightly higherdispersion than the other two algorithms|this is expressed by our two formul�1:30=pm (LogLog) and 1:05=pm (super{LogLog). This pla
es our algorithmin the same 
ategory as Adaptive Bitmap of [3℄. However, 
ompared to Adap-tive Bitmap, the LogLog algorithm has the great advantage of being universalas it makes no assumptions on the statisti
al regularity of data. We thus believeLogLog and its improved version Super{LogLog to be the best general-purposealgorithmi
 solution 
urrently known to the problem of estimating large 
ardinali-ties.



4 MARIANNE DURAND AND PHILIPPE FLAJOLETAlgorithm LogLog(M: Multiset of hashed values; m � 2k)Initialise M (1); : : : ;M (m) to 0;let �(y) be the rank of �rst 1-bit from the left in y;for x = b1b2 � � � 2M doset j := hb1 � � � bki2 (value of �rst k bits in base 2)set M (j) := max(M (j); �(bk+1bk+2 � � � );return E := �mm2 1mPjM (j) as 
ardinality estimate.Figure 2. The prin
iple of the basi
 LogLog algorithm.2. The basi
 LogLog algorithmIn 
omputing pra
ti
e, one deals with a multiset of data items, ea
h belongingto a dis
rete universe U . For instan
e, in the 
ase of natural text, U may be theset of all alphabeti
 strings of length � 28 (`antidisestablishmentarianism'), double
oats represented on 64 bits, and so on. A multisetM of elements of U is given andthe problem is to estimate its 
ardinality, that is, the number of distin
t elementsit 
omprises.We shall assume throughout that a hash fun
tion, h, is available that transformselements of U into suÆ
iently long binary strings, in su
h a way that bits 
om-posing the hashed value 
losely resemble random uniform independent bits. Thispragmati
 attitude1 is justi�ed by Knuth who writes in [10℄: \It is theoreti
ally im-possible to de�ne a hash fun
tion that 
reates random data from non-random datain a
tual �les. But in pra
ti
e it is not diÆ
ult to produ
e a pretty good imitationof random data." Given this, we formalize our basi
 problem as follows.Take U = f0; 1g1 as the universe of data endowed with the uniform (prod-u
t) probability distribution. An ideal multiset M of 
ardinality n is arandom obje
t that is produ
ed by �rst drawing an n-sequen
e indepen-dently at random from U , then repli
ating elements in an arbitrary way,and �nally, applying an arbitrary permutation.The user is provided with the (extremely large) ideal multiset M and itsgoal is to estimate the (unknown to him) value of n at a small 
omputational
ost. No information is available, hen
e no statisti
al assumption 
an bemade, regarding the behaviour of the repli
ator-shu�er daemon.(The fa
t that we 
onsider in�nite data is a 
onvenient abstra
tion at this stage;we dis
uss its e�e
t, together with needed adjustments, in Se
tion 5 below.)The basi
 idea 
onsists in s
anning M and observing the patterns of the form0?1 that o

ur at the beginning of (hashed) re
ords. For a string x 2 f0; 1g1, let�(x) denote the position of its �rst 1-bit. Thus �(1 � � � ) = 1, �(001 � � � ) = 3, et
.Clearly, we expe
t about n=2k amongst the distin
t elements ofM to have a �-valueequal to k. In other words, the quantity,R(M) := maxx2M �(x);
an reasonably be hoped to provide a rough indi
ation on the value of log2 n. Itis an \observable" in the sense above sin
e it is totally independent of the order1The more theoreti
ally in
lined reader may prefer to draw h at random from a family ofuniversal hash fun
tions; see, e.g., the general dis
ussion in [12℄ and the spe
i�
 [1℄.



LOGLOG COUNTING OF LARGE CARDINALITIES 5and the repli
ation stru
ture of the multisetM. In fa
t, in probabilisti
 terms, thequantity R is pre
isely distributed in the same way as 1 plus the maximum of nindependent geometri
 variables of parameter 12 . This is an extensively resear
hedsubje
t; see, e.g., [13℄. It turns out that R estimates log2 n with an additive biasof 1:33 and a standard deviation of 1:87. Thus, in a sense, the observed value of Restimates \logarithmi
ally" n within �1:87 binary orders of magnitude. Noti
ehowever that the expe
tation of 2R is in�nite so that 2R 
annot in fa
t be used toestimate n.The next idea 
onsists in separating elements intom groups also 
alled \bu
kets",wherem is a design parameter. With m = 2k, this is easily done by using the �rst kbits of x as representing in binary the index of a bu
ket. One 
an then 
ompute theparameterR on ea
h bu
ket, after dis
arding the �rst k bits. IfM (j) is the (random)value of parameter R on bu
ket number j, then the arithmeti
 mean 1mPmj=1M (j);
an legitimately be expe
ted to approximate log2(n=m) plus an additive bias. Theestimate of n returned by the LogLog algorithm (Figure 2) is a

ordingly(1) E := �mm2 1mPM(j) :The 
onstant �m, whi
h 
omes out of our later analysis as(2) �m := ��(�1=m)2�1=m � 1log 2 ��m ; �(s) := 1s Z 10 e�tts dt;pre
isely 
orre
ts the systemati
 bias in the asymptoti
 limit. One may also hopefor a greater 
on
entration of the estimates, hen
e better a

ura
y, to result fromaveraging over m � 1 values. The main 
hara
teristi
s of the algorithm are sum-marized below in Theorem 1. The letters E ;V denote expe
tation and varian
e,and the subs
ript n indi
ates the 
ardinality of the underlying random multiset.Theorem 1. Consider the basi
 LogLog algorithm applied to an ideal multiset of(unknown) 
ardinality n and let E be the estimated value of 
ardinality returned bythe algorithm.(i) The estimate E is asymptoti
ally unbiased in the sense that, as n!1,1nEn (E) = 1 + �1;n + o(1); where j�1;nj < 10�6:(ii) The standard error de�ned as 1npVn(E) satis�es as n!1,1npVn(E) = �mpm + �2;n + o(1); where j�2;nj < 10�6:One has: �128 := 1:30540; �1024 := 1:29897; �1 =q 112 log2 2 + 16�2 := 1:29806:In summary, apart from 
ompletely negligible 
u
tuations whose amplitude isless than 10�6, the algorithm provides asymptoti
ally a valid estimator of n. Thestandard error, whi
h measures in a mean-quadrati
 sense and in proportion to nthe deviations to be expe
ted, is 
losely approximated by the formula2Standard error � 1:30pm:2We use `�' to denote asymptoti
 expansions in the usual mathemati
al sense and reserve theinformal `�' for \approximately equal".
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ket register M , for � = 2 � 104 [right℄.For instan
e, m = 256 and m = 1024 give a standard error of 8% and 4% respe
-tively. (These �gures are 
ompatible with what was observed on the Shakespearedata.) Observe also that �m � �1 � 2�2 + log2 224m , where �1 = e�
p2 := 0:79402(
 is Euler's 
onstant), so that, in pra
ti
al implementations, �m 
an be repla
edby �1 without mu
h dete
table bias as soon as m � 64, say (�64 := 0:783).The proof of Theorem 1 will o

upy the whole of the next se
tion.3. The basi
 analysisThroughout this note, the number of distin
t values in the data set is denoted byn. The LogLog algorithm provides an estimator, E, of this unknown value n. Here,we �rst provide formul� for the expe
tation and varian
e of E. Asymptoti
 analysisis performed next: Subse
tion 3.1 introdu
es the Poisson model where the unknown
ardinality n is allowed to vary a

ording to a Poisson law, while Subse
tion 3.2shows the Poisson model to be asymptoti
ally equivalent to the \�xed{n" modelthat we need. The expe
ted value of the estimator is found to be asymptoti
ally n,up to minute 
u
tuations. This establishes the asymptoti
ally unbiased 
hara
terof the algorithm as asserted in (i) of Theorem 1. The standard deviation of theestimator is also proved to be of the order of n with the proportionality 
oeÆ
ientproviding the value of the standard error, hen
e the a

ura
y of the algorithm, asasserted in (ii) of Theorem 1.We start by examining what happens in a bu
ket that re
eives � elements (Fig-ure 3). The random variable M is, we re
all, the maximum of � random variablesthat are independent and geometri
ally distributed a

ording to P(Y � k) = 12k .Consequently, the probability distribution of M is 
hara
terized byP�(M � k) = �1� 12k�� ; P�(M = k) = �1� 12k�� ��1� 12k�1�� :The bivariate (exponential) generating fun
tion of this family of probability distri-butions as � varies is then(3) G(z; u) :=X�;k P�(M = k)uk z��! : =Xk uk �ez(1�1=2k+1) � ez(1�1=2k)� ;



LOGLOG COUNTING OF LARGE CARDINALITIES 7as shown by a simple 
al
ulation. The starting point of the analysis is an expressionin terms of G of the mean and varian
e ofZ := E=�m � m2 1m Pj M(j) ;whi
h is the unnormalized version of the estimator E. With the expression [zn℄f(z)representing the 
oeÆ
ient of zn in the power series f(z), we state:Lemma 1. The expe
ted value and varian
e of the unormalized estimator Z areEn (Z) = mn![zn℄G� zm; 21=m�mVn(Z) = m2n![zn℄�G� zm; 22=m��m � �mn![zn℄G� zm; 21=m�m�2 :Proof. The multinomial 
onvolution relations 
orresponding to mth powers of generatingfun
tions imply that n![zn℄G(z=m; u)m is the probability generating fun
tion of Pj M (j).(The multinomials enumerate all ways of distributing elements amongst bu
kets.) Theexpressions for the �rst and se
ond moment of Z are obtained from there by substitutingu 7! 21=m and u 7! 22=m. �Proving Theorem 1 is redu
ed to estimating asymptoti
ally these quantities.3.1. Poissonization. In this subse
tion we \poissonize" the problem of 
omputingthe expe
ted value and the varian
e. In this way, 
al
ulations 
an take advantageof powerful properties of the Mellin transform. (The next subse
tion is dedi
atedto \depoissonization" of the results obtained here.)The Poisson law of rate � is the law of a random variable X su
h that P(X =`) = e�� �``! : Given a 
lass Ms of probabilisti
 models indexed by integers s, pois-sonizing means 
onsidering the \supermodel" where modelMs is 
hosen a

ordingto a Poisson law of rate �. Sin
e the poisson model of a large parameter � is pre-dominantly a mixture of models Ms with s in the vi
inity of � (the Poison lawis \
on
entrated" near its mean), one 
an expe
t, in a number of 
ir
umstan
es,properties of the �xed-n model Mn to be re
e
ted by 
orresponding properties ofthe Poisson model taken with rate � = n.A useful feature is that expressions of moments and probabilities under thePoisson model are 
losely related to exponential generating fun
tions of the �xed-n models. This owes to the fa
t that if f(z) = Pn fnzn=n! is the exponentialgenerating fun
tion of expe
tations of a parameter, then the quantitye��f(�) =Xn fne���nn! ;gives the 
orresponding expe
tation under the Poisson model. In this way, one seesthat the quantities(4) 8<: En = mG� nm; 21=m�m e�nVn = m2G � nm ; 22=m�m e�n � �mG � nm ; 21=m�m e�n�2 :are respe
tively the mean and varian
e of Z when the 
ardinality of the underlyingmultiset obeys a Poisson law of rate � = n.



8 MARIANNE DURAND AND PHILIPPE FLAJOLETLemma 2. The Poisson mean and varian
e En and Vn satisfy as n!1:(5) En � "��(�1=m)2�1=m � 1log 2 �m + �n# � nVn � "��(�2=m)2�2=m � 1log 2 �m ���(�1=m)2�1=m � 1log 2 �2m + �n# � n2:where j�nj and j�nj are bounded by 10�6.The proof 
ru
ially relies on the Mellin transform de�ned, for a real fun
tionf(x) as the 
omplex fun
tionf?(s) = Z 10 f(t)ts�1 dt:(In parti
ular, the transform of e�x is the gamma fun
tion �(s).) The two majorproperties of the Mellin transform are as follows: (i) there is a 
orresponden
ebetween asymptoti
 properties of the original fun
tion f and singularities of thetransforms f?; (ii) harmoni
 sums de�ned as sums of the form P�f(�x) have atransform that fa
torizes as (P���s) � f?(s). The 
onjun
tion of both propertiesthen renders possible the analysis of fairly intri
ate 
ombinatorial sums: see [6℄for an extensive survey and Szpankowski's book [14℄ for many appli
ations to theanalysis of algorithms. (Property (i) results from the Mellin inversion formulaand the residue theorem; Property (ii) re
e
ts the a
tion of Mellin transforms onres
aled fun
tions.)Proof. One 
an rewrite the two quantities in (4) asEn = mA(n)m; Vn + E2n = m2B(n)m;where A(x) and B(x) are harmoni
 sums,A(x) =Xi 2i=m �'(x=2i+1)� '(x=2i)� ; B(x) =Xi 22i=m �'(x=2i+1)� '(x=2i)� ;with '(x) = e�x=m. This results from the expression of G in Equation (3). The Mellintransform of ' is '�(s) = ms�(s), and as a 
onsequen
e of the a
tion of the Mellintransform on harmoni
 sums, one �ndsA�(s) = '�(s)(2s � 1) 11� 21=m2s ; B�(s) = '�(s)(2s � 1) 11� 22=m2s :Expe
tation. The fundamental strip of A?(s) (the strip where the integral giving thetransform 
onverges absolutely) is h�1;�1=mi. The singularities of A�(s) on the verti
alline <(s) = �1=m are lo
ated at =(s) � 0 mod (2�= log 2). Ea
h of these singularitiesindu
es a 
ontribution to the asymptoti
 expansion of A(x). The main 
ontribution arisesfrom the singularity lo
ated on the real axis. Near s = �1=m, one has(6) A�(s) � �as+ 1=m; with a = m�1=m�(�1=m)2�1=m � 1log 2 :The Mellin transfer theorem gives the 
orresponding 
ontribution ax1=m in the asymptoti
expansion of A(x) at in�nity. For the non-real singularities lo
ated at �1=m+2ik�= log 2,the lo
al expansions areA�(s) � �aks+ 1=m; with ak = m�1=m���1=m+ 2ik�log 2� 2�1=m � 1log 2 :
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h of these singularities adds a 
ontribution to the asymptoti
 of A(x) of the formakx1=m+2ik�= log 2. The fast de
rease of the � fun
tion along a verti
al line implies thatthese 
onstants ak are very small. (For instan
e j�(2i�= log 2)j � 5�10�7 and j�(4i�= log 2)j �3 �10�12.) As a 
onsequen
e, the value En = mA(n)m is asymptoti
 to mamn+ �nn where�n is a 
u
tuation3 of amplitude < 10�6. This proves the mean value estimate in (5).Varian
e. For the varian
e, observe that the fundamental strip of B?(s) is h�1;�2=mi.The \major" pole is now at s = �2=m, where there holds(7) B�(s) � b �1s+ 2=m with b = m�2=m�(�2=m)2�2=m � 1log 2 :The 
ontribution of this singularity to B(x) is thus bx2=m. Negle
ting the tiny 
u
tuations,the Mellin transfer theorem shows that B(x) � bx2=m. The varian
e estimate in (5) isthen a dire
t 
onsequen
e. �3.2. Depoissonization. Finally, the asymptoti
 forms of the �rst two momentsof the LogLog estimator 
an be transferred ba
k from the Poisson model to the�xed-n model that underlies Theorem 1. The pro
ess involved is known as \de-poissonization". Various options are dis
ussed in Chapter 10 of Szpankowski'sbook [14℄. We 
hoose the method 
alled \analyti
 depoissonization" by Ja
quetand Szpankowski, whose underlying engine is the saddle point method applied toCau
hy integrals; see [9, 14℄. In essen
e, the values of an exponential generatingfun
tion at large arguments are 
losely related to the asymptoti
 form of its 
oeÆ-
ients provided the generating fun
tion de
ays fast enough away from the positivereal axis in the 
omplex plane.Lemma 3. The �rst two moments of the LogLog estimator are asymptoti
allyequivalent under the Poisson and �xed{n model:En (Z) � En; Vn(Z) � VnProof. First we de�ne the 
one S� asS� = fz : j arg zj � �g; with j�j < �=2:The Basi
 Depoissonization Lemma of [9℄ 
an be rephrased for the expe
ted value asfollows. Assume that there exists � > 0, � < 1, su
h that(C1): inside the 
one S� there holds e�zG�z=m; 21=m�m = O(jzj),(C2): outside the 
one S�, there holds G�z=m; 21=m�m = O(e�jzj).Then E(Zn ) � En. The generating fun
tion G(z; u) of (3) rewrites asG(z=m; 21=m) = ez=mXk 2k=me�z2�k�1=m �1� e�z2�k�1=m� :If <(z) � 0, we have G(z=m; 21=m) = O(z1=mez=m). The 
ondition (C1) is then 
learlysatis�ed for any � < �=2. For the se
ond 
ondition, (C2), we observe that if � > 0,equivalently, <(z) � 0,then there exists an �, 0 < � < 1; if <(z) < 0, thenG(z=m; 21=m) =O(z1=m). The proof for the varian
e is entirely similar. �We 
an now 
on
lude the proof of Theorem 1. The unnormalized estimator Zgrows like n=�m by Lemmas 2 and 3. Thus the normalized estimator E = �mZ isasymptoti
ally unbiased. The standard error is, upon negle
ting small 
u
tuations,asymptoti
 topbma�2m � 1, with a; b as in (6) and (7), again by virtue of Lemmas 23Flu
tuations with tiny values are inherent in the problem. Though 
ompletely o�set bystatisti
al 
u
tuations, they still make the analysis intrinsi
ally non-elementary.



10 MARIANNE DURAND AND PHILIPPE FLAJOLETand 3. The quantity displayed is pre
isely �m=pm in the notations of Theorem 1.Easy numeri
al 
al
ulations and straight asymptoti
 analysis of �m 
on
lude theevaluations stated there. 4. Spa
e requirementsNow that the 
orre
tness|the absen
e of bias as well as a

ura
y|of the basi
LogLog algorithm has been established, there remains to see that it performs aspromised and only 
onsumes O(log logn) bits of storage if 
ounts till n are needed4.In its abstra
t form of Se
tion 1, the LogLog algorithm operates with poten-tially unbounded integer registers and it 
onsumes m of these. What we 
all an`{restri
ted algorithm is one in whi
h ea
h of the M (j) registers is made of ` bits,that is, it 
an store any integer between 0 and 2`�1. We state a shallow result onlymeant to phrase mathemati
ally the log-log property of the basi
 spa
e 
omplexity:Theorem 2. Let !(n) be a fun
tion that tends to in�nity arbitrarily slowly and
onsider the fun
tion `(n) = log2 log2 � nm�+ !(n):Then, the `(n){restri
ted algorithm and the LogLog algorithm provide the sameoutput with probability tending to 1 as n tends to in�nity.The auxiliary tables maintained by the algorithm then 
omprisem \small bytes",ea
h of size `(n). In other words, the total spa
e required by the algorithm in orderto 
ount till n is m log2 log2 � nm� (1 + o(1)) :(The m in the denominator is unne
essary but it is kept for 
onsisten
y with laterdevelopments.) The hashing fun
tion needs to hash values from the original datauniverse onto exa
tly 2`(n)+log2m bits. Observe also that, whenever no dis
repan
yis present at the value n itself, the restri
ted algorithm automati
ally provides theright answer for all values n0 � n.Proof. First, by standard properties of the multinomial distribution, the probability thatany bu
ket re
eives more than 2n=m elements is exponentially small. Su
h 
ases 
an thusbe dis
arded. Then the probability that any single bu
ket has a register value M thatex
eeds k is (1�(1�2�k)2n=m). Consequently, the overall probability of failure is boundedfrom above by(8) m � �1� �1� 2�2`+1�2n=m� :This last quantity is 
losely approximated by 4n � 2�2` = 4m� nm��2!(n)+1. Thus, theprobability of a failure de
reases mu
h faster than any negative power of n. �Assume for instan
e that we wish to 
ount 
ardinalities till 227, that is, over ahundred million, with an a

ura
y of about 4%. By Theorem 1, one should adoptm = 1024 = 210. Then, ea
h bu
ket is visited roughly n=m = 217 times. Onehas log2 log2 217 := 4:09. Adopt ! = 0:91, so that ea
h register has a size of ` = 54A 
ounting algorithm exhibiting a log-log feature in a di�erent 
ontext is Morris'sApproximateCounting [11℄ analysed in [4℄.



LOGLOG COUNTING OF LARGE CARDINALITIES 11bits, i.e., a value less than 32. Applying the upperbound of (8) shows that an `{restri
tion will have little in
iden
e on the result: the probability of a dis
repan
y5is lower than 12%. In summary: The basi
 LogLog 
ounting algorithm makes itis possible to estimate 
ardinalities till 108 with a standard error of 4% using 1024registers of 5 bits ea
h, that is, a table of 640 bytes in total.5. Algorithmi
 engineeringIn this se
tion, we des
ribe a 
on
rete implementation of the LogLog algorithmthat in
orporates the probabilisti
 prin
iples seen in previous se
tions. At the sametime, we propose an optimization that has several bene�
ial e�e
ts: (i) it in
reasesat no extra 
ost the a

ura
y of the results, i.e., it de
reases the dispersion of theestimates around the mean value; (ii) it allows for the use of smaller register values,thereby improving the storage utilization of the algorithm and nullifying the e�e
tof length restri
tion dis
ussed in Se
tion 4.The fundamental probability distribution is that of the value of the M{registerin a bu
ket that re
eives � elements (where � � n=m). This is the maximum of �geometri
 random variables with mean 
lose to log2 n. The tails of this distribution,though exponential, are still relatively \soft", as there holds P�(M > log2 � + k) �2�k: Sin
e the estimate returned involves an exponential of the arithmeti
 mean ofbu
ket registers, a few ex
eptional values may still distort the estimate produ
edby the algorithm, while more tame data will not indu
e this e�e
t. Altogether,this phenomenon lies at the origin of a natural dispersion of estimates produ
ed bythe algorithm, hen
e it pla
es a limit on the a

ura
y of 
ardinality estimates. Asimple remedy to the situation 
onsists in using trun
ation:Trun
ation Rule. When 
olle
ting register values in order to produ
e the�nal estimate, retain only the m0 := b�0m
 smallest values and dis
ard therest. There �0 is a real number between 0 and 1, with �0 = 0:7 produ
ingnear-optimal results. The mean of these registers is 
omputed and the esti-mate returned is m0e�m2 1m0 P?M(j) ; where �? indi
ates the trun
ated sum.The modi�ed 
onstant e�m ensures that the algorithm remains unbiased.When the trun
ation rule is applied, a

ura
y does in
rease. An empiri
ally deter-mined formula for the standard error is 1:05pm ; when the Trun
ation Rule with �0 =0:7 is employed.A serendipitous 
onsequen
e of this te
hnique is that larger values of the registersplay no rôle in the �nal estimate. Consequently, length restri
tions in the sense ofSe
tion 4 
an be pushed 
onsiderably further. Here is for instan
e a table of themaximum value of registers ever taken into a

ount by the Restri
tion Rule on 100simulations (for random data and for ea
h (n;m)):log2m 6 7 8 9 10 11n = 100; 000 13 12 11 10 9 8n = 1; 000; 000 17 16 14 13 12 11Su
h empiri
al studies justify the fa
t that register values may be 
eiled at thevalue dlog2 � nm�e+ Æ; without dete
table e�e
t for Æ = 3. In other words, one mayfreely 
ombine the algorithm with restri
tion as follows:5In addition, a 
orre
tion fa
tor, 
al
ulated a

ording to the prin
iples of Se
tion 3, 
ouldeasily be built into the algorithm, in order to 
ompensate the small bias indu
ed by restri
tion
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0 200000 400000 600000Figure 4. The evolution of the estimate (divided by the 
urrentvalue of n) provided by super{LogLog on all of Shakespeare'sworks: (left) words; (right) pairs of 
onse
utive words. Here m =256 (standard error=6.5%).Restri
tion Rule. Use register values that are in the interval [0 : :B℄,where �log2�Nmaxm �+ 3� � B:For instan
e for the data at the end of Se
tion 4, with n = 227, m = 1024, thevalue B = 20 (en
oded on 5 bits) is suÆ
ient. But now, the probability thatlength-restri
tion a�e
ts the estimate of the algorithm drops tremendously.Fa
t 1. Combining the basi
 LogLog 
ounting algorithm, theTrun
ation Rule and the Restri
tion Rule yields the super-LogLogalgorithm that estimates 
ardinalities with a standard error of� 1:05pmwhen m \small bytes" are used. Here a small byte has size�log2 �log2�Nmaxm �+ 3�� ;that is, 5 bits for maximum 
ardinalities Nmax well over 108.Length of the hash fun
tion and 
ollisions. The length H of the hashfun
tion|how many bits should it produ
e?| is guided by previous 
onsiderations.There must be log2m bits reserved for bu
keting and the bound on register valuesshould be at least as large as the quantity B above. A

ordingly this value H mustsatisfy: H � H0; where H0 := log2m+ �log2�Nmaxm �+ 3� :In 
ase a value too 
lose to H0 is adopted (say 0 � H �H0 � 3), then the e�e
tof hashing 
ollisions must be 
ompensated for. This is a
hieved by inverting thefun
tion that gives the expe
ted value of the number of 
ollisions in a hash table(see [3, 15℄ for an analogous dis
ussion). The estimator is then to be 
hanged into�2H log�1� e�mm2H 2 1m P?M(j)� :(No dete
table degradation of performan
e results from the last modi�
ation of theestimator fun
tion, and it 
an safely be used in all 
ases.)
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y of estimates returned by the Super-LogLog algorithm with m = 256 
orresponding to a standarderror of 6:5%: n = 50; 000 (from 50,000 runs on random data).Risk analysis. For the pure LogLog algorithm, the estimate is an empiri
almean of random variables that are approximately identi
ally distributed (up to sta-tisti
al 
u
tuations in bu
ket sizes). From there, it 
an be proved that the quantity1mPj M (j) is numeri
ally 
losely approximated by a Gaussian. Consequently, theestimate returned is very roughly Gaussian: at any rate, it has exponentially de-
aying tails. (In prin
iple, a full analysis would be feasible.) A similar property isexpe
ted for the super-LogLog algorithm sin
e it is based on the same prin
iples.This nearly Gaussian 
hara
ter is 
on�rmed by Figure 5. As a 
onsequen
e, weobtain the following pragmati
 
on
lusion:Fa
t 2. Let � := 1:05pm . The estimate is within �, 2�, and 3� of theexa
t value of the 
ardinality n in respe
tively 65%, 95%, and 99%of the 
ases.(Another topi
 that we don't have spa
e to dis
uss here is the 
orre
tion of small{nnonlinearities, whi
h is feasible.)6. Con
lusionsThat super{LogLog performs quite well in pra
ti
e is 
on�rmed by the followingdata from simulations:k = log2m 4 5 6 7 8 9 10 11 12�? 29.5 19.8 13.8 9.4 6.5 4.5 3.1 2.2 1.51:05=pm 26.3 18.6 13.1 9.3 6.5 4.6 3.3 2.3 1.6Random 22 16 11 8 6 4 3 2.3 2KingLear 8.2 1.6 2.1 3.9 2.9 1.2 0.3 1.7 |ShAll 2.9 13.9 4.4 0.9 9.4 4.1 3.0 0.8 0.6Pi 67 28 9.7 8.6 2.8 5.1 1.9 1.2 0.7Note. �? refers to standard error as estimated from extensive simulations, to be 
ompared tothe empiri
al formula 1:05=pm. The next lines display the absolute value of the relative errormeasured. Random refers to averages over 10,000 runs with n = 20; 000; the other data are singleruns: Pi is formed of 2 � 107 re
ords that are 
onse
utive 10{digit sli
es of the �rst 200 millionde
imals of �; ShAll is the whole of Shakespeare's works. KingLear is what its name says.As we have strived to demonstrate, the LogLog algorithm in its optimized ver-sion performs quite well. The following table (grossly) summarizes the a

ura
y(measured by standard error �) in relation to the storage used for the major meth-ods known. Note that di�erent algorithms operate with di�erent memory units.



14 MARIANNE DURAND AND PHILIPPE FLAJOLETAlgorithm Std. Err. (�) Memory units n = 108, � = 0:02Adaptive Sampling 1:20=pm Re
ords (�24{bit words) 10.8 kbytesProb. Counting 0:78=pm Words (24{32 bits) 6.0 kbytesMultires. Bitmap � 4:4=pm Bits 4.8 kbytesLogLog 1:30=pm \Small bytes" (5 bits) 2.1 kbytesSuper-LogLog 1:05=pm \Small bytes" (5 bits) 1.7 kbytesThe last 
olumn is a rough indi
ation of the storage requirement for an a

ura
y of 2% and a �leof 
ardinality 108. (The formula for Multiresolution Bitmap is a 
rude extrapolation based ondata of [3℄.)Distributing or parallelizing the algorithm is trivial: it suÆ
es to have di�er-ent pro
essors (sharing the same hash fun
tion) operate on di�erent sli
es of thedata and then \max{merge" their tables of registers. Optimal speed-up is 
learlyattained and interpro
ess 
ommuni
ation is limited to just a few kilobytes. Require-ments for an embedded hardware design are absolutely minimal as only addressing,register 
omparisons, and integer addition are needed.A
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