
LOGLOG COUNTING OF LARGE CARDINALITIESMARIANNE DURAND AND PHILIPPE FLAJOLETAbstrat. Using an auxiliary memory smaller than the size of this abstrat,the LogLog algorithm makes it possible to estimate in a single pass and withina few perents the number of di�erent words in the whole of Shakespeare'sworks. In general the LogLog algorithm makes use of m \small bytes" ofauxiliary memory in order to estimate in a single pass the number of distintelements (the \ardinality") in a �le, and it does so with an auray thatis of the order of 1=pm. The \small bytes" to be used in order to ountardinalities till Nmax omprise about log logNmax bits, so that ardinalitieswell in the range of billions an be determined using one or two kilobytes ofmemory only. The basi version of the LogLog algorithm is validated by aomplete analysis. An optimized version, super{LogLog, is also engineeredand tested on real-life data. The algorithm parallelizes optimally.1. IntrodutionThe problem addressed in this note is that of determining the number of distintelements, also alled the ardinality, of a large �le. This problem arises in severalareas of data-mining, database query optimization, and the analysis of traÆ inrouters. In suh ontexts, the data may be either too large to �t at one in orememory or even too massive to be stored, being a huge ontinuous ow of datapakets. For instane, Estan et al. [3℄ report traes of paket headers, produed ata rate of 0.5GB per hour of ompressed data (!), whih were olleted while tryingto trae a \worm" (Code Red, August 1 to 12, 2001), and on whih it was neessaryto ount the number of distint soures passing through the link. We propose herethe LogLog algorithm that estimates ardinalities using only a very small amountof auxiliary memory, namely m memory units, where a memory unit, a \smallbyte", omprises lose to log logNmax bits, with Nmax an a priori upperbound onardinalities. The estimate is (in the sense of mean values) asymptotially unbiased ;the relative auray of the estimate (measured by a standard deviation) is loseto 1:05=pm for our best version of the algorithm, Super{LogLog. For instane,estimating ardinalities till Nmax = 227 (a hundred million di�erent reords) anbe ahieved with m = 2048 memory units of 5 bits eah, whih orresponds to 1.28kilobytes of auxiliary storage in total, the error observed being typially less than2.5%. Sine the algorithm operates inrementally and in a single pass it an beapplied to data ows for whih it provides on-line estimates available at any giventime. Advantage an be taken of the low memory onsumption in order to gathersimultaneously a very large number of statistis on huge heterogeneous data sets.The LogLog algorithm an also be fully distributed or parallelized, with optimumspeed-up andminimal interproess ommuniation. Finally, an embedded hardwaredesign would involve stritly minimal resoures.Motivations. A traditional appliation of ardinality estimates is databasequery optimization. There, a omplex query typially involves a variety of set-theoreti operations as well as projetions, joints, and so on. In this ontext,knowing \for free" ardinalities of assoiated sets provides a valuable guide for se-leting an eÆient proessing strategy best suited to the data at hand. Even aDate: April 1, 2003. Submitted to the European Symposium on Algorithms, Esa'2003.1

2 MARIANNE DURAND AND PHILIPPE FLAJOLETproblem as simple as merging two large �les with dupliates an be treated by var-ious ombinations of sorting, straight merging, and �ltering out dupliates (in oneor both of the �les); the ost funtion of eah possible strategy is then determinedby the number of reords as well as by the ardinality of eah �le. Probabilistiestimation algorithms also �nd a use in large data reording and warehousing en-vironments. There, the goal is to provide an approximate response in time that isorders-of-magnitude less than what omputing an exat answer would require: seethe desription of the Aqua Projet by Gibbons et al. in [8℄.The analysis of traÆ in routers, as already mentioned, bene�ts greatly of ardi-nality estimators|this is luidly exposed by Estan et al. in [2, 3℄. Certain types ofattaks (e.g., \denial of servie" and \port sans") are betrayed by alarmingly highounts of ertain harateristi events at the level of routers. In suh situations,there is usually not enough resoure available to store and searh on-line the verylarge number of events that take plae even in a relatively small time window.Probabilisti ounting algorithms an also be used within other algorithms when-ever the �nal answer is the ardinality of a large set and a small tolerane on thequality of the answer is aeptable. Palmer et al. [8℄ desribe the use of suh algo-rithms in an extensive onnetivity analysis of the internet topology. For instane,one of the tasks needed there is to determine, for eah distane h, the number ofpairs of nodes that are at distane at most h in the internet graph. Sine the graphstudied by [8℄ has lose to 300,000 nodes, the number of pairs to be onsidered iswell over 1010, upon whih ostly list operations must be performed by exat algo-rithms. In ontrast an algorithm that would be, in the abstrat, suboptimal anbe oupled with adapted probabilisti ounting tehniques and still provide reliableestimates. In this way, the authors of [8℄ were able to extrat extensive metri in-formation on the internet graph by keeping a redued olletion of data that residein ore memory. They report a redution in run-time by a fator of more than 400.Algorithms. The LogLog algorithm is probabilisti. Like in many similaralgorithms, the �rst idea is to appeal to a hashing funtion in order to randomizedata and bring them to a form that resembles random (uniform, independent)binary data. It is this hashed data set that is distilled into ardinality estimatesby the algorithm. Various algorithms perform various tests on the hashed dataset, then ompare \observables" to what probabilisti analysis predits, and �nally\dedue" a plausible value of the parameter of interest. In the ase of LogLogounting, the observable should only be linked to ardinality, and hene be totallyindependent of the nature of repliations and the ordering of data present in the �le,on whih no information at all is available. (Depending on ontext, ollisions dueto hashing an either be negleted or their e�et an be estimated and orreted.)Whang, Zanden, and Taylor have developed Linear Counting, whih distributes(hashed) values into bukets and only keeps a bitmap indiating whih buketsare hit. Then observing the number of hits in the table leads to an estimate ofardinality. Sine the number of bukets should not be muh smaller than the ar-dinalities to be estimated (say, � Nmax=10), the algorithm has spae omplexitythat is O(Nmax) (typially, Nmax=10 bits of storage). The linear spae is a draw-bak whenever large ardinalities, multiple ounts, or limited hardware are the rule.Estan, Varghese, and Fisk [3℄ have devised a multisale version of this priniple,where a hierarhial olletion of small windows on the bitmap is kept. From simu-lation data, their Multiresolution Bitmap algorithm appears to be about 20% more

LOGLOG COUNTING OF LARGE CARDINALITIES 3ghfffghfghgghggggghghheehfhfhhgghghghhfgffffhhhiigfhhffgfiihfhhhigigighfgihfffghigihghigfhhgeegeghgghhhgghhfhidiigihighihehhhfgghfgighigffghdieghhhggghhfghhfiiheffghghihifgggffihgihfggighgiiiffjgfgjhhjiifhjgehgghfhhfhjhiggghghihigghhihihgiighgfhlgjfgjjjmflFigure 1. The LogLog Algorithm with m = 256 ondenses thewhole of Shakespeare's works to a table of 256 \small bytes" of 4bits eah. The estimate of the number of distint words in this runis nÆ = 30897 (the true answer is n = 28239), whih represents arelative error of +9.4%.aurate than Probabilisti Counting (disussed below) when the same amount ofmemory is used. The best algorithm of [3℄ for ows in routers, Adaptive Bitmap, isreported to be about 3 times more eÆient than either Probabilisti Counting orMultiresolution Bitmap, but is has the disadvantage of not being universal, as itmakes de�nite statistial assumptions (\stationarity") regarding the data input tothe algorithm. (We reommend the thorough engineering disussion of [3℄.)Closer to us is the Probabilisti Counting algorithm of Flajolet and Martin [7℄.This uses a ertain observable that has exellent statistial properties but is rel-atively ostly to maintain in terms of storage. Indeed, Probabilisti Counting es-timates ardinalities with an error lose to 0:78=pm given a table of m \words",eah of size about log2Nmax.Yet another possible idea is sampling. One may may use any �lter on hashedvalues with seletivity p � 1, store exatly and without dupliates the data items�ltered and return as estimate 1=p times the orresponding ardinality. Wegner'sAdaptive Sampling (desribed and analysed in [5℄) is an elegant way to maintaindynamially varying values of p. For m \words" of memory (where here \word"refers to the spae needed by a data item), the auray is about 1:20=pm, whihis about 50% less eÆient than Probabilisti Counting.An insightful omplexity-theoreti disussion of approximate ounting is pro-vided by Alon, Matias, and Szegedy in [1℄. The authors disuss a lass of \frequeny{moments" statistis whih inludes ours (as their F0 statistis). Our LogLog Al-gorithm has priniples that evoke some of those found in the intersetion of [1℄ andthe earlier [7℄, but ontrary to [1℄, we develop here a omplete eminently pratialalgorithmi solution and provide a very preise analysis, inluding bias orretion,error and risk evaluation, as well as omplete dimensioning rules.We estimate that our LogLog algorithm outperforms the earlier ProbabilistiCounting algorithm and the similarly performing Multiresolution Bitmap of [3℄ bya fator of 3 at least as it replaes \words" (of 16 to 32 bits) by \small bytes" of typ-ially 5 bits eah, while being based on an observable that has only slightly higherdispersion than the other two algorithms|this is expressed by our two formul�1:30=pm (LogLog) and 1:05=pm (super{LogLog). This plaes our algorithmin the same ategory as Adaptive Bitmap of [3℄. However, ompared to Adap-tive Bitmap, the LogLog algorithm has the great advantage of being universalas it makes no assumptions on the statistial regularity of data. We thus believeLogLog and its improved version Super{LogLog to be the best general-purposealgorithmi solution urrently known to the problem of estimating large ardinali-ties.

4 MARIANNE DURAND AND PHILIPPE FLAJOLETAlgorithm LogLog(M: Multiset of hashed values; m � 2k)Initialise M (1); : : : ;M (m) to 0;let �(y) be the rank of �rst 1-bit from the left in y;for x = b1b2 � � � 2M doset j := hb1 � � � bki2 (value of �rst k bits in base 2)set M (j) := max(M (j); �(bk+1bk+2 � � �);return E := �mm2 1mPjM (j) as ardinality estimate.Figure 2. The priniple of the basi LogLog algorithm.2. The basi LogLog algorithmIn omputing pratie, one deals with a multiset of data items, eah belongingto a disrete universe U . For instane, in the ase of natural text, U may be theset of all alphabeti strings of length � 28 (`antidisestablishmentarianism'), doubleoats represented on 64 bits, and so on. A multisetM of elements of U is given andthe problem is to estimate its ardinality, that is, the number of distint elementsit omprises.We shall assume throughout that a hash funtion, h, is available that transformselements of U into suÆiently long binary strings, in suh a way that bits om-posing the hashed value losely resemble random uniform independent bits. Thispragmati attitude1 is justi�ed by Knuth who writes in [10℄: \It is theoretially im-possible to de�ne a hash funtion that reates random data from non-random datain atual �les. But in pratie it is not diÆult to produe a pretty good imitationof random data." Given this, we formalize our basi problem as follows.Take U = f0; 1g1 as the universe of data endowed with the uniform (prod-ut) probability distribution. An ideal multiset M of ardinality n is arandom objet that is produed by �rst drawing an n-sequene indepen-dently at random from U , then repliating elements in an arbitrary way,and �nally, applying an arbitrary permutation.The user is provided with the (extremely large) ideal multiset M and itsgoal is to estimate the (unknown to him) value of n at a small omputationalost. No information is available, hene no statistial assumption an bemade, regarding the behaviour of the repliator-shu�er daemon.(The fat that we onsider in�nite data is a onvenient abstration at this stage;we disuss its e�et, together with needed adjustments, in Setion 5 below.)The basi idea onsists in sanning M and observing the patterns of the form0?1 that our at the beginning of (hashed) reords. For a string x 2 f0; 1g1, let�(x) denote the position of its �rst 1-bit. Thus �(1 � � �) = 1, �(001 � � �) = 3, et.Clearly, we expet about n=2k amongst the distint elements ofM to have a �-valueequal to k. In other words, the quantity,R(M) := maxx2M �(x);an reasonably be hoped to provide a rough indiation on the value of log2 n. Itis an \observable" in the sense above sine it is totally independent of the order1The more theoretially inlined reader may prefer to draw h at random from a family ofuniversal hash funtions; see, e.g., the general disussion in [12℄ and the spei� [1℄.

LOGLOG COUNTING OF LARGE CARDINALITIES 5and the repliation struture of the multisetM. In fat, in probabilisti terms, thequantity R is preisely distributed in the same way as 1 plus the maximum of nindependent geometri variables of parameter 12 . This is an extensively researhedsubjet; see, e.g., [13℄. It turns out that R estimates log2 n with an additive biasof 1:33 and a standard deviation of 1:87. Thus, in a sense, the observed value of Restimates \logarithmially" n within �1:87 binary orders of magnitude. Notiehowever that the expetation of 2R is in�nite so that 2R annot in fat be used toestimate n.The next idea onsists in separating elements intom groups also alled \bukets",wherem is a design parameter. With m = 2k, this is easily done by using the �rst kbits of x as representing in binary the index of a buket. One an then ompute theparameterR on eah buket, after disarding the �rst k bits. IfM (j) is the (random)value of parameter R on buket number j, then the arithmeti mean 1mPmj=1M (j);an legitimately be expeted to approximate log2(n=m) plus an additive bias. Theestimate of n returned by the LogLog algorithm (Figure 2) is aordingly(1) E := �mm2 1mPM(j) :The onstant �m, whih omes out of our later analysis as(2) �m := ��(�1=m)2�1=m � 1log 2 ��m ; �(s) := 1s Z 10 e�tts dt;preisely orrets the systemati bias in the asymptoti limit. One may also hopefor a greater onentration of the estimates, hene better auray, to result fromaveraging over m � 1 values. The main harateristis of the algorithm are sum-marized below in Theorem 1. The letters E ;V denote expetation and variane,and the subsript n indiates the ardinality of the underlying random multiset.Theorem 1. Consider the basi LogLog algorithm applied to an ideal multiset of(unknown) ardinality n and let E be the estimated value of ardinality returned bythe algorithm.(i) The estimate E is asymptotially unbiased in the sense that, as n!1,1nEn (E) = 1 + �1;n + o(1); where j�1;nj < 10�6:(ii) The standard error de�ned as 1npVn(E) satis�es as n!1,1npVn(E) = �mpm + �2;n + o(1); where j�2;nj < 10�6:One has: �128 := 1:30540; �1024 := 1:29897; �1 =q 112 log2 2 + 16�2 := 1:29806:In summary, apart from ompletely negligible utuations whose amplitude isless than 10�6, the algorithm provides asymptotially a valid estimator of n. Thestandard error, whih measures in a mean-quadrati sense and in proportion to nthe deviations to be expeted, is losely approximated by the formula2Standard error � 1:30pm:2We use `�' to denote asymptoti expansions in the usual mathematial sense and reserve theinformal `�' for \approximately equal".

6 MARIANNE DURAND AND PHILIPPE FLAJOLET
0

50

100

150

200

250

300

350

12 14 16 18 20 22 0

0.05

0.1

0.15

0.2

0.25

12 14 16 18 20 22Figure 3. The distribution of observed register values for the Pi�le, n � 2 � 107 with m = 1024 [left℄; the distribution P�(M = k)of a buket register M , for � = 2 � 104 [right℄.For instane, m = 256 and m = 1024 give a standard error of 8% and 4% respe-tively. (These �gures are ompatible with what was observed on the Shakespearedata.) Observe also that �m � �1 � 2�2 + log2 224m , where �1 = e�p2 := 0:79402(is Euler's onstant), so that, in pratial implementations, �m an be replaedby �1 without muh detetable bias as soon as m � 64, say (�64 := 0:783).The proof of Theorem 1 will oupy the whole of the next setion.3. The basi analysisThroughout this note, the number of distint values in the data set is denoted byn. The LogLog algorithm provides an estimator, E, of this unknown value n. Here,we �rst provide formul� for the expetation and variane of E. Asymptoti analysisis performed next: Subsetion 3.1 introdues the Poisson model where the unknownardinality n is allowed to vary aording to a Poisson law, while Subsetion 3.2shows the Poisson model to be asymptotially equivalent to the \�xed{n" modelthat we need. The expeted value of the estimator is found to be asymptotially n,up to minute utuations. This establishes the asymptotially unbiased haraterof the algorithm as asserted in (i) of Theorem 1. The standard deviation of theestimator is also proved to be of the order of n with the proportionality oeÆientproviding the value of the standard error, hene the auray of the algorithm, asasserted in (ii) of Theorem 1.We start by examining what happens in a buket that reeives � elements (Fig-ure 3). The random variable M is, we reall, the maximum of � random variablesthat are independent and geometrially distributed aording to P(Y � k) = 12k .Consequently, the probability distribution of M is haraterized byP�(M � k) = �1� 12k�� ; P�(M = k) = �1� 12k�� ��1� 12k�1�� :The bivariate (exponential) generating funtion of this family of probability distri-butions as � varies is then(3) G(z; u) :=X�;k P�(M = k)uk z��! : =Xk uk �ez(1�1=2k+1) � ez(1�1=2k)� ;

LOGLOG COUNTING OF LARGE CARDINALITIES 7as shown by a simple alulation. The starting point of the analysis is an expressionin terms of G of the mean and variane ofZ := E=�m � m2 1m Pj M(j) ;whih is the unnormalized version of the estimator E. With the expression [zn℄f(z)representing the oeÆient of zn in the power series f(z), we state:Lemma 1. The expeted value and variane of the unormalized estimator Z areEn (Z) = mn![zn℄G� zm; 21=m�mVn(Z) = m2n![zn℄�G� zm; 22=m��m � �mn![zn℄G� zm; 21=m�m�2 :Proof. The multinomial onvolution relations orresponding to mth powers of generatingfuntions imply that n![zn℄G(z=m; u)m is the probability generating funtion of Pj M (j).(The multinomials enumerate all ways of distributing elements amongst bukets.) Theexpressions for the �rst and seond moment of Z are obtained from there by substitutingu 7! 21=m and u 7! 22=m. �Proving Theorem 1 is redued to estimating asymptotially these quantities.3.1. Poissonization. In this subsetion we \poissonize" the problem of omputingthe expeted value and the variane. In this way, alulations an take advantageof powerful properties of the Mellin transform. (The next subsetion is dediatedto \depoissonization" of the results obtained here.)The Poisson law of rate � is the law of a random variable X suh that P(X =`) = e�� �``! : Given a lass Ms of probabilisti models indexed by integers s, pois-sonizing means onsidering the \supermodel" where modelMs is hosen aordingto a Poisson law of rate �. Sine the poisson model of a large parameter � is pre-dominantly a mixture of models Ms with s in the viinity of � (the Poison lawis \onentrated" near its mean), one an expet, in a number of irumstanes,properties of the �xed-n model Mn to be reeted by orresponding properties ofthe Poisson model taken with rate � = n.A useful feature is that expressions of moments and probabilities under thePoisson model are losely related to exponential generating funtions of the �xed-n models. This owes to the fat that if f(z) = Pn fnzn=n! is the exponentialgenerating funtion of expetations of a parameter, then the quantitye��f(�) =Xn fne���nn! ;gives the orresponding expetation under the Poisson model. In this way, one seesthat the quantities(4) 8<: En = mG� nm; 21=m�m e�nVn = m2G � nm ; 22=m�m e�n � �mG � nm ; 21=m�m e�n�2 :are respetively the mean and variane of Z when the ardinality of the underlyingmultiset obeys a Poisson law of rate � = n.

8 MARIANNE DURAND AND PHILIPPE FLAJOLETLemma 2. The Poisson mean and variane En and Vn satisfy as n!1:(5) En � "��(�1=m)2�1=m � 1log 2 �m + �n# � nVn � "��(�2=m)2�2=m � 1log 2 �m ���(�1=m)2�1=m � 1log 2 �2m + �n# � n2:where j�nj and j�nj are bounded by 10�6.The proof ruially relies on the Mellin transform de�ned, for a real funtionf(x) as the omplex funtionf?(s) = Z 10 f(t)ts�1 dt:(In partiular, the transform of e�x is the gamma funtion �(s).) The two majorproperties of the Mellin transform are as follows: (i) there is a orrespondenebetween asymptoti properties of the original funtion f and singularities of thetransforms f?; (ii) harmoni sums de�ned as sums of the form P�f(�x) have atransform that fatorizes as (P���s) � f?(s). The onjuntion of both propertiesthen renders possible the analysis of fairly intriate ombinatorial sums: see [6℄for an extensive survey and Szpankowski's book [14℄ for many appliations to theanalysis of algorithms. (Property (i) results from the Mellin inversion formulaand the residue theorem; Property (ii) reets the ation of Mellin transforms onresaled funtions.)Proof. One an rewrite the two quantities in (4) asEn = mA(n)m; Vn + E2n = m2B(n)m;where A(x) and B(x) are harmoni sums,A(x) =Xi 2i=m �'(x=2i+1)� '(x=2i)� ; B(x) =Xi 22i=m �'(x=2i+1)� '(x=2i)� ;with '(x) = e�x=m. This results from the expression of G in Equation (3). The Mellintransform of ' is '�(s) = ms�(s), and as a onsequene of the ation of the Mellintransform on harmoni sums, one �ndsA�(s) = '�(s)(2s � 1) 11� 21=m2s ; B�(s) = '�(s)(2s � 1) 11� 22=m2s :Expetation. The fundamental strip of A?(s) (the strip where the integral giving thetransform onverges absolutely) is h�1;�1=mi. The singularities of A�(s) on the vertialline <(s) = �1=m are loated at =(s) � 0 mod (2�= log 2). Eah of these singularitiesindues a ontribution to the asymptoti expansion of A(x). The main ontribution arisesfrom the singularity loated on the real axis. Near s = �1=m, one has(6) A�(s) � �as+ 1=m; with a = m�1=m�(�1=m)2�1=m � 1log 2 :The Mellin transfer theorem gives the orresponding ontribution ax1=m in the asymptotiexpansion of A(x) at in�nity. For the non-real singularities loated at �1=m+2ik�= log 2,the loal expansions areA�(s) � �aks+ 1=m; with ak = m�1=m���1=m+ 2ik�log 2� 2�1=m � 1log 2 :

LOGLOG COUNTING OF LARGE CARDINALITIES 9Eah of these singularities adds a ontribution to the asymptoti of A(x) of the formakx1=m+2ik�= log 2. The fast derease of the � funtion along a vertial line implies thatthese onstants ak are very small. (For instane j�(2i�= log 2)j � 5�10�7 and j�(4i�= log 2)j �3 �10�12.) As a onsequene, the value En = mA(n)m is asymptoti to mamn+ �nn where�n is a utuation3 of amplitude < 10�6. This proves the mean value estimate in (5).Variane. For the variane, observe that the fundamental strip of B?(s) is h�1;�2=mi.The \major" pole is now at s = �2=m, where there holds(7) B�(s) � b �1s+ 2=m with b = m�2=m�(�2=m)2�2=m � 1log 2 :The ontribution of this singularity to B(x) is thus bx2=m. Negleting the tiny utuations,the Mellin transfer theorem shows that B(x) � bx2=m. The variane estimate in (5) isthen a diret onsequene. �3.2. Depoissonization. Finally, the asymptoti forms of the �rst two momentsof the LogLog estimator an be transferred bak from the Poisson model to the�xed-n model that underlies Theorem 1. The proess involved is known as \de-poissonization". Various options are disussed in Chapter 10 of Szpankowski'sbook [14℄. We hoose the method alled \analyti depoissonization" by Jaquetand Szpankowski, whose underlying engine is the saddle point method applied toCauhy integrals; see [9, 14℄. In essene, the values of an exponential generatingfuntion at large arguments are losely related to the asymptoti form of its oeÆ-ients provided the generating funtion deays fast enough away from the positivereal axis in the omplex plane.Lemma 3. The �rst two moments of the LogLog estimator are asymptotiallyequivalent under the Poisson and �xed{n model:En (Z) � En; Vn(Z) � VnProof. First we de�ne the one S� asS� = fz : j arg zj � �g; with j�j < �=2:The Basi Depoissonization Lemma of [9℄ an be rephrased for the expeted value asfollows. Assume that there exists � > 0, � < 1, suh that(C1): inside the one S� there holds e�zG�z=m; 21=m�m = O(jzj),(C2): outside the one S�, there holds G�z=m; 21=m�m = O(e�jzj).Then E(Zn) � En. The generating funtion G(z; u) of (3) rewrites asG(z=m; 21=m) = ez=mXk 2k=me�z2�k�1=m �1� e�z2�k�1=m� :If <(z) � 0, we have G(z=m; 21=m) = O(z1=mez=m). The ondition (C1) is then learlysatis�ed for any � < �=2. For the seond ondition, (C2), we observe that if � > 0,equivalently, <(z) � 0,then there exists an �, 0 < � < 1; if <(z) < 0, thenG(z=m; 21=m) =O(z1=m). The proof for the variane is entirely similar. �We an now onlude the proof of Theorem 1. The unnormalized estimator Zgrows like n=�m by Lemmas 2 and 3. Thus the normalized estimator E = �mZ isasymptotially unbiased. The standard error is, upon negleting small utuations,asymptoti topbma�2m � 1, with a; b as in (6) and (7), again by virtue of Lemmas 23Flutuations with tiny values are inherent in the problem. Though ompletely o�set bystatistial utuations, they still make the analysis intrinsially non-elementary.

10 MARIANNE DURAND AND PHILIPPE FLAJOLETand 3. The quantity displayed is preisely �m=pm in the notations of Theorem 1.Easy numerial alulations and straight asymptoti analysis of �m onlude theevaluations stated there. 4. Spae requirementsNow that the orretness|the absene of bias as well as auray|of the basiLogLog algorithm has been established, there remains to see that it performs aspromised and only onsumes O(log logn) bits of storage if ounts till n are needed4.In its abstrat form of Setion 1, the LogLog algorithm operates with poten-tially unbounded integer registers and it onsumes m of these. What we all an`{restrited algorithm is one in whih eah of the M (j) registers is made of ` bits,that is, it an store any integer between 0 and 2`�1. We state a shallow result onlymeant to phrase mathematially the log-log property of the basi spae omplexity:Theorem 2. Let !(n) be a funtion that tends to in�nity arbitrarily slowly andonsider the funtion `(n) = log2 log2 � nm�+ !(n):Then, the `(n){restrited algorithm and the LogLog algorithm provide the sameoutput with probability tending to 1 as n tends to in�nity.The auxiliary tables maintained by the algorithm then omprisem \small bytes",eah of size `(n). In other words, the total spae required by the algorithm in orderto ount till n is m log2 log2 � nm� (1 + o(1)) :(The m in the denominator is unneessary but it is kept for onsisteny with laterdevelopments.) The hashing funtion needs to hash values from the original datauniverse onto exatly 2`(n)+log2m bits. Observe also that, whenever no disrepanyis present at the value n itself, the restrited algorithm automatially provides theright answer for all values n0 � n.Proof. First, by standard properties of the multinomial distribution, the probability thatany buket reeives more than 2n=m elements is exponentially small. Suh ases an thusbe disarded. Then the probability that any single buket has a register value M thatexeeds k is (1�(1�2�k)2n=m). Consequently, the overall probability of failure is boundedfrom above by(8) m � �1� �1� 2�2`+1�2n=m� :This last quantity is losely approximated by 4n � 2�2` = 4m� nm��2!(n)+1. Thus, theprobability of a failure dereases muh faster than any negative power of n. �Assume for instane that we wish to ount ardinalities till 227, that is, over ahundred million, with an auray of about 4%. By Theorem 1, one should adoptm = 1024 = 210. Then, eah buket is visited roughly n=m = 217 times. Onehas log2 log2 217 := 4:09. Adopt ! = 0:91, so that eah register has a size of ` = 54A ounting algorithm exhibiting a log-log feature in a di�erent ontext is Morris'sApproximateCounting [11℄ analysed in [4℄.

LOGLOG COUNTING OF LARGE CARDINALITIES 11bits, i.e., a value less than 32. Applying the upperbound of (8) shows that an `{restrition will have little inidene on the result: the probability of a disrepany5is lower than 12%. In summary: The basi LogLog ounting algorithm makes itis possible to estimate ardinalities till 108 with a standard error of 4% using 1024registers of 5 bits eah, that is, a table of 640 bytes in total.5. Algorithmi engineeringIn this setion, we desribe a onrete implementation of the LogLog algorithmthat inorporates the probabilisti priniples seen in previous setions. At the sametime, we propose an optimization that has several bene�ial e�ets: (i) it inreasesat no extra ost the auray of the results, i.e., it dereases the dispersion of theestimates around the mean value; (ii) it allows for the use of smaller register values,thereby improving the storage utilization of the algorithm and nullifying the e�etof length restrition disussed in Setion 4.The fundamental probability distribution is that of the value of the M{registerin a buket that reeives � elements (where � � n=m). This is the maximum of �geometri random variables with mean lose to log2 n. The tails of this distribution,though exponential, are still relatively \soft", as there holds P�(M > log2 � + k) �2�k: Sine the estimate returned involves an exponential of the arithmeti mean ofbuket registers, a few exeptional values may still distort the estimate produedby the algorithm, while more tame data will not indue this e�et. Altogether,this phenomenon lies at the origin of a natural dispersion of estimates produed bythe algorithm, hene it plaes a limit on the auray of ardinality estimates. Asimple remedy to the situation onsists in using trunation:Trunation Rule. When olleting register values in order to produe the�nal estimate, retain only the m0 := b�0m smallest values and disard therest. There �0 is a real number between 0 and 1, with �0 = 0:7 produingnear-optimal results. The mean of these registers is omputed and the esti-mate returned is m0e�m2 1m0 P?M(j) ; where �? indiates the trunated sum.The modi�ed onstant e�m ensures that the algorithm remains unbiased.When the trunation rule is applied, auray does inrease. An empirially deter-mined formula for the standard error is 1:05pm ; when the Trunation Rule with �0 =0:7 is employed.A serendipitous onsequene of this tehnique is that larger values of the registersplay no rôle in the �nal estimate. Consequently, length restritions in the sense ofSetion 4 an be pushed onsiderably further. Here is for instane a table of themaximum value of registers ever taken into aount by the Restrition Rule on 100simulations (for random data and for eah (n;m)):log2m 6 7 8 9 10 11n = 100; 000 13 12 11 10 9 8n = 1; 000; 000 17 16 14 13 12 11Suh empirial studies justify the fat that register values may be eiled at thevalue dlog2 � nm�e+ Æ; without detetable e�et for Æ = 3. In other words, one mayfreely ombine the algorithm with restrition as follows:5In addition, a orretion fator, alulated aording to the priniples of Setion 3, ouldeasily be built into the algorithm, in order to ompensate the small bias indued by restrition

12 MARIANNE DURAND AND PHILIPPE FLAJOLET
0.9

0.95

1

1.05

1.1

1.15

0 10000 20000
0.85

0.9

0.95

1

1.05

0 200000 400000 600000Figure 4. The evolution of the estimate (divided by the urrentvalue of n) provided by super{LogLog on all of Shakespeare'sworks: (left) words; (right) pairs of onseutive words. Here m =256 (standard error=6.5%).Restrition Rule. Use register values that are in the interval [0 : :B℄,where �log2�Nmaxm �+ 3� � B:For instane for the data at the end of Setion 4, with n = 227, m = 1024, thevalue B = 20 (enoded on 5 bits) is suÆient. But now, the probability thatlength-restrition a�ets the estimate of the algorithm drops tremendously.Fat 1. Combining the basi LogLog ounting algorithm, theTrunation Rule and the Restrition Rule yields the super-LogLogalgorithm that estimates ardinalities with a standard error of� 1:05pmwhen m \small bytes" are used. Here a small byte has size�log2 �log2�Nmaxm �+ 3�� ;that is, 5 bits for maximum ardinalities Nmax well over 108.Length of the hash funtion and ollisions. The length H of the hashfuntion|how many bits should it produe?| is guided by previous onsiderations.There must be log2m bits reserved for buketing and the bound on register valuesshould be at least as large as the quantity B above. Aordingly this value H mustsatisfy: H � H0; where H0 := log2m+ �log2�Nmaxm �+ 3� :In ase a value too lose to H0 is adopted (say 0 � H �H0 � 3), then the e�etof hashing ollisions must be ompensated for. This is ahieved by inverting thefuntion that gives the expeted value of the number of ollisions in a hash table(see [3, 15℄ for an analogous disussion). The estimator is then to be hanged into�2H log�1� e�mm2H 2 1m P?M(j)� :(No detetable degradation of performane results from the last modi�ation of theestimator funtion, and it an safely be used in all ases.)

LOGLOG COUNTING OF LARGE CARDINALITIES 13
0

200

400

600

800

1000

40,000 50,000 60,000Figure 5. The frequeny of estimates returned by the Super-LogLog algorithm with m = 256 orresponding to a standarderror of 6:5%: n = 50; 000 (from 50,000 runs on random data).Risk analysis. For the pure LogLog algorithm, the estimate is an empirialmean of random variables that are approximately identially distributed (up to sta-tistial utuations in buket sizes). From there, it an be proved that the quantity1mPj M (j) is numerially losely approximated by a Gaussian. Consequently, theestimate returned is very roughly Gaussian: at any rate, it has exponentially de-aying tails. (In priniple, a full analysis would be feasible.) A similar property isexpeted for the super-LogLog algorithm sine it is based on the same priniples.This nearly Gaussian harater is on�rmed by Figure 5. As a onsequene, weobtain the following pragmati onlusion:Fat 2. Let � := 1:05pm . The estimate is within �, 2�, and 3� of theexat value of the ardinality n in respetively 65%, 95%, and 99%of the ases.(Another topi that we don't have spae to disuss here is the orretion of small{nnonlinearities, whih is feasible.)6. ConlusionsThat super{LogLog performs quite well in pratie is on�rmed by the followingdata from simulations:k = log2m 4 5 6 7 8 9 10 11 12�? 29.5 19.8 13.8 9.4 6.5 4.5 3.1 2.2 1.51:05=pm 26.3 18.6 13.1 9.3 6.5 4.6 3.3 2.3 1.6Random 22 16 11 8 6 4 3 2.3 2KingLear 8.2 1.6 2.1 3.9 2.9 1.2 0.3 1.7 |ShAll 2.9 13.9 4.4 0.9 9.4 4.1 3.0 0.8 0.6Pi 67 28 9.7 8.6 2.8 5.1 1.9 1.2 0.7Note. �? refers to standard error as estimated from extensive simulations, to be ompared tothe empirial formula 1:05=pm. The next lines display the absolute value of the relative errormeasured. Random refers to averages over 10,000 runs with n = 20; 000; the other data are singleruns: Pi is formed of 2 � 107 reords that are onseutive 10{digit slies of the �rst 200 milliondeimals of �; ShAll is the whole of Shakespeare's works. KingLear is what its name says.As we have strived to demonstrate, the LogLog algorithm in its optimized ver-sion performs quite well. The following table (grossly) summarizes the auray(measured by standard error �) in relation to the storage used for the major meth-ods known. Note that di�erent algorithms operate with di�erent memory units.

14 MARIANNE DURAND AND PHILIPPE FLAJOLETAlgorithm Std. Err. (�) Memory units n = 108, � = 0:02Adaptive Sampling 1:20=pm Reords (�24{bit words) 10.8 kbytesProb. Counting 0:78=pm Words (24{32 bits) 6.0 kbytesMultires. Bitmap � 4:4=pm Bits 4.8 kbytesLogLog 1:30=pm \Small bytes" (5 bits) 2.1 kbytesSuper-LogLog 1:05=pm \Small bytes" (5 bits) 1.7 kbytesThe last olumn is a rough indiation of the storage requirement for an auray of 2% and a �leof ardinality 108. (The formula for Multiresolution Bitmap is a rude extrapolation based ondata of [3℄.)Distributing or parallelizing the algorithm is trivial: it suÆes to have di�er-ent proessors (sharing the same hash funtion) operate on di�erent slies of thedata and then \max{merge" their tables of registers. Optimal speed-up is learlyattained and interproess ommuniation is limited to just a few kilobytes. Require-ments for an embedded hardware design are absolutely minimal as only addressing,register omparisons, and integer addition are needed.Aknowledgements. This work has been partly supported by the European Union underthe Future and Emerging Tehnologies programme of the Fifth Framework, Alom-ftProjet IST-1999-14186. The authors are grateful to Cristian Estan and George Varghesefor very liberally sharing ideas and preliminary versions of their works.Referenes[1℄ Alon, N., Matias, Y., and Szegedy, M. The spae omplexity of approximating the fre-queny moments. Journal of Computer and System Sienes 58 (1999), 137{147.[2℄ Estan, C., and Varghese, G. New diretions in traÆ measurement and aounting. InProeedings of SIGCOMM 2002 (2002), ACM Press. (Also: UCSD tehnial report CS2002-0699, February, 2002; available eletronially.).[3℄ Estan, C., Varghese, G., and Fisk, M. Bitmap algorithms for ounting ative ows on highspeed links. Tehnial Report CS2003-0738, UCSD, Mar. 2003.[4℄ Flajolet, P. Approximate ounting: A detailed analysis. BIT 25 (1985), 113{134.[5℄ Flajolet, P. On adaptive sampling. Computing 34 (1990), 391{400.[6℄ Flajolet, P., Gourdon, X., and Dumas, P.Mellin transforms and asymptotis : Harmonisums. Theoretial Computer Siene 144, 1-2 (1995), 3{58.[7℄ Flajolet, P., and Martin, G. N. Probabilisti ounting algorithms for data base applia-tions. Journal of Computer and System Sienes 31, 2 (1985), 182{209.[8℄ Gibbons, P. B., Poosala, V., Aharya, S., Bartal, Y., Matias, Y., Muthukrishnan,S., Ramaswamy, S., and Suel, T. AQUA: System and tehniques for approximate queryanswering. Teh. report, Bell Laboratories, Murray Hill, New Jersey, Feb. 1998.[9℄ Jaquet, P., and Szpankowski, W. Analytial depoissonization and its appliations. The-oretial Computer Siene 201, 1-2 (1998).[10℄ Knuth, D. E. The Art of Computer Programming, 2nd ed., vol. 3: Sorting and Searhing.Addison-Wesley, 1998.[11℄ Morris, R. Counting large numbers of events in small registers. Communiations of theACM 21 (1978), 840{842.[12℄ Motwani, R., and Raghavan, P. Randomized Algorithms. Cambridge University Press,1995.[13℄ Prodinger, H. Combinatoris of geometrially distributed random variables: Left-to-rightmaxima. Disrete Mathematis 153 (1996), 253{270.[14℄ Szpankowski, W. Average-Case Analysis of Algorithms on Sequenes. John Wiley, NewYork, 2001.[15℄ Whang, K.-Y., Zanden, B. T. V., and Taylor, H. M. A linear-time probabilisti ountingalgorithm for database appliations. TODS 15, 2 (1990), 208{229.Address: Algorithms Projet, INRIA{Roquenourt, F78153 Le Chesnay (Frane)

