
NP-complete Problems:
Reductions

Alexander S. Kulikov
Steklov Institute of Mathematics at St. Petersburg

Russian Academy of Sciences

Advanced Algorithms and Complexity
Data Structures and Algorithms

https://www.coursera.org/learn/advanced-algorithms-and-complexity
https://goo.gl/KAfKJT

Outline
1 Reductions

2 Showing NP-completeness

3 Independent Set → Vertex Cover

4 3-SAT → Independent Set

5 SAT → 3-SAT

6 All of NP → SAT

7 Using SAT-solvers

Informally

We say that a search problem A is reduced
to a search problem B and write A → B , if a
polynomial time algorithm for B can be used
(as a black box) to solve A in polynomial
time.

Reduction: A → B

instance I of A

Reduction: A → B

instance I of A

Algorithm for B

Algorithm for A

Reduction: A → B

instance I of A

Algorithm for B

Algorithm for A f

Reduction: A → B

instance I of A

Algorithm for B

Algorithm for A f

instance f (I) of B

Reduction: A → B

instance I of A

Algorithm for B

Algorithm for A f

instance f (I) of B

no solution to f (I)

Reduction: A → B

instance I of A

Algorithm for B

Algorithm for A f

instance f (I) of B

no solution to f (I)

no solution to I

Reduction: A → B

instance I of A

Algorithm for B

Algorithm for A f

instance f (I) of B

no solution to f (I)

no solution to I

solution S to f (I)

Reduction: A → B

instance I of A

Algorithm for B

Algorithm for A f

instance f (I) of B

no solution to f (I)

no solution to I

solution S to f (I)

h

Reduction: A → B

instance I of A

Algorithm for B

Algorithm for A f

instance f (I) of B

no solution to f (I)

no solution to I

solution S to f (I)

h

solution h(S) to I

Formally
Definition
We say that a search problem A is reduced
to a search problem B and write A → B , if
there exists a polynomial time algorithm f

that converts any instance I of A into an
instance f (I) of B , together with a
polynomial time algorithm h that converts
any solution S to f (I) back to a solution
h(S) to A. If there is no solution to f (I),
then there is no solution to I .

Graph of Search Problems

NP

Graph of Search Problems

NP

NP-complete Problems
Definition
A search problem is called NP-complete if
all other search problems reduce to it.

NP

NP-complete Problems
Definition
A search problem is called NP-complete if
all other search problems reduce to it.

NP

Do they exist?

It’s not at all immediate that NP-complete
problems even exist. We’ll see later that all
hard problems that we’ve seen in the
previous part are in fact NP-complete!

Outline
1 Reductions

2 Showing NP-completeness

3 Independent Set → Vertex Cover

4 3-SAT → Independent Set

5 SAT → 3-SAT

6 All of NP → SAT

7 Using SAT-solvers

Two ways of using A → B :

1 if B is easy (can be solved in polynomial
time), then so is A

2 if A is hard (cannot be solved in
polynomial time), then so is B

Reductions Compose

Lemma
If A → B and B → C , then A → C .

Proof

The reductions A → B and B → C are
given by pairs of polytime algorithms
(fAB , hAB) and (fBC , hBC).

To transform an instance IA of A to an
instance IC of C we apply a polytime
algorithm fBC ∘ fAB : IC = fBC (fAB(IA)).
To transform a solution SC to IC to a
solution SA to IA we apply a polytime
algorithm hAB ∘ hBC :
SA = hAB(hBC (SC)).

Proof

The reductions A → B and B → C are
given by pairs of polytime algorithms
(fAB , hAB) and (fBC , hBC).
To transform an instance IA of A to an
instance IC of C we apply a polytime
algorithm fBC ∘ fAB : IC = fBC (fAB(IA)).

To transform a solution SC to IC to a
solution SA to IA we apply a polytime
algorithm hAB ∘ hBC :
SA = hAB(hBC (SC)).

Proof

The reductions A → B and B → C are
given by pairs of polytime algorithms
(fAB , hAB) and (fBC , hBC).
To transform an instance IA of A to an
instance IC of C we apply a polytime
algorithm fBC ∘ fAB : IC = fBC (fAB(IA)).
To transform a solution SC to IC to a
solution SA to IA we apply a polytime
algorithm hAB ∘ hBC :
SA = hAB(hBC (SC)).

Pictorially

NP

Pictorially

NP

Pictorially

NP

Showing NP-completeness
Corollary

If A → B and A is NP-complete, then so
is B .

Showing NP-completeness
Corollary

If A → B and A is NP-complete, then so
is B .

NP

A B

Showing NP-completeness
Corollary

If A → B and A is NP-complete, then so
is B .

NP

A B

Showing NP-completeness
Corollary

If A → B and A is NP-complete, then so
is B .

NP

A B

Showing NP-completeness
Corollary

If A → B and A is NP-complete, then so
is B .

NP

A B

Showing NP-completeness
Corollary

If A → B and A is NP-complete, then so
is B .

NP

A B

Plan

vertex cover

independent set

Plan

vertex cover

independent set

3-SAT

Plan

vertex cover

independent set

3-SAT

SAT

Plan

vertex cover

independent set

3-SAT

SAT

Outline
1 Reductions

2 Showing NP-completeness

3 Independent Set → Vertex Cover

4 3-SAT → Independent Set

5 SAT → 3-SAT

6 All of NP → SAT

7 Using SAT-solvers

Independent set

Input: A graph and a budget b.
Output: A subset of at least b vertices such

that no two of them are adjacent.

Vertex cover

Input: A graph and a budget b.
Output: A subset of at most b vertices that

touches every edge.

Independent set

Input: A graph and a budget b.
Output: A subset of at least b vertices such

that no two of them are adjacent.

Vertex cover

Input: A graph and a budget b.
Output: A subset of at most b vertices that

touches every edge.

Example

A

B C

D

E

F G

H

Example

A

B C

D

E

F G

H

Independent sets:

Example

Independent sets:

{E ,C}

A

B C

D

E

F G

H

Example

Independent sets:

{E ,C} {A,C , F ,H}

A

B C

D

E

F G

H

Example

Independent sets:

{E ,C} {A,C , F ,H}

Vertex covers:

{A,B ,D, F ,G ,H}

A

B C

D

E

F G

H

Example

Independent sets:

{E ,C} {A,C , F ,H}

Vertex covers:

{A,B ,D, F ,G ,H}
{B ,D,E ,G}A

B C

D

E

F G

H

Lemma
I is an independent set of G (V ,E), if and
only if V − I is a vertex cover of G .

Proof
⇒ If I is an independent set, then there is

no edge with both endpoints in I .
Hence V − I touches every edge.

⇐ If V − I touches every edge, then each
edge has at least one endpoint in V − I .
Hence I is an independent set.

Reduction
Independent set → vertex cover: to check
whether G (V ,E) has an independent set of
size at least b, check whether G has a vertex
cover of size at most |V | − b:

f (G (V ,E), b) = (G (V ,E), |V | − b)

h(S) = V − S

Outline
1 Reductions

2 Showing NP-completeness

3 Independent Set → Vertex Cover

4 3-SAT → Independent Set

5 SAT → 3-SAT

6 All of NP → SAT

7 Using SAT-solvers

3-SAT

Input: Formula F in 3-CNF (a collection
of clauses each having at most
three literals).

Output: An assignment of Boolean values to
the variables of F satisfying all
clauses, if exists.

Goal
Design a polynomial time algorithm that,
given a 3-CNF formula F , outputs a graph G

and an integer b, such that:
F is satisfiable, if and only if G has
an independent set of size at
least b.

We need to find an assignment of Boolean
values to variables, such that each clause
contains at least one satisfied literal.

Example

Setting x = 1, y = 1, z = 1 satisfies a
formula (x ∨ y ∨ z)(x ∨ y)(y ∨ z).
Setting x = 1, y = 0, z = 0 also satisfies
it: (x ∨ y ∨ z)(x ∨ y)(y ∨ z).

We need to find an assignment of Boolean
values to variables, such that each clause
contains at least one satisfied literal.

Example

Setting x = 1, y = 1, z = 1 satisfies a
formula (x ∨ y ∨ z)(x ∨ y)(y ∨ z).

Setting x = 1, y = 0, z = 0 also satisfies
it: (x ∨ y ∨ z)(x ∨ y)(y ∨ z).

We need to find an assignment of Boolean
values to variables, such that each clause
contains at least one satisfied literal.

Example

Setting x = 1, y = 1, z = 1 satisfies a
formula (x ∨ y ∨ z)(x ∨ y)(y ∨ z).
Setting x = 1, y = 0, z = 0 also satisfies
it: (x ∨ y ∨ z)(x ∨ y)(y ∨ z).

Alternatively, we need to select at least one
literal from each clause, such that the set of
selected literals is consistent: it does not
contain a literal ℓ together with its
negation ℓ.

Example: (x ∨ y ∨ z)(x ∨ y)(y ∨ z)

Consistent: {x , x , z}, {x , x , y},
{x , y , z}.
Inconsistent: {y , y , z}, {z , x , z}.

Alternatively, we need to select at least one
literal from each clause, such that the set of
selected literals is consistent: it does not
contain a literal ℓ together with its
negation ℓ.

Example: (x ∨ y ∨ z)(x ∨ y)(y ∨ z)

Consistent: {x , x , z}, {x , x , y},
{x , y , z}.

Inconsistent: {y , y , z}, {z , x , z}.

Alternatively, we need to select at least one
literal from each clause, such that the set of
selected literals is consistent: it does not
contain a literal ℓ together with its
negation ℓ.

Example: (x ∨ y ∨ z)(x ∨ y)(y ∨ z)

Consistent: {x , x , z}, {x , x , y},
{x , y , z}.
Inconsistent: {y , y , z}, {z , x , z}.

Using Alternative Statement

(x ∨ y ∨ z)(x ∨ y)(y ∨ z)(z ∨ x)(x ∨ y ∨ z)

Using Alternative Statement

(x ∨ y ∨ z)(x ∨ y)(y ∨ z)(z ∨ x)(x ∨ y ∨ z)

x

y

z x

y

y

z

z

x

x

y

z

Using Alternative Statement

(x ∨ y ∨ z)(x ∨ y)(y ∨ z)(z ∨ x)(x ∨ y ∨ z)

x

y

z x

y

y

z

z

x

x

y

z

Using Alternative Statement

(x ∨ y ∨ z)(x ∨ y)(y ∨ z)(z ∨ x)(x ∨ y ∨ z)

x

y

z x

y

y

z

z

x

x

y

z

Using Alternative Statement

(x ∨ y ∨ z)(x ∨ y)(y ∨ z)(z ∨ x)(x ∨ y ∨ z)

x

y

z x

y

y

z

z

x

x

y

z

the formula is satisfiable iff the resulting
graph has independent set of size 5

Transforming an Instance
For each clause of the input formula F ,
introduce three (or two, or one) vertices
in G labeled with the literals of this
clause. Join every two of them.

Join every pair of vertices labeled with
complementary literals.
F is satisfiable if and only if G has
independent set of size equal to the
number of clauses in F .
Transformation takes polynomial time.

Transforming an Instance
For each clause of the input formula F ,
introduce three (or two, or one) vertices
in G labeled with the literals of this
clause. Join every two of them.
Join every pair of vertices labeled with
complementary literals.

F is satisfiable if and only if G has
independent set of size equal to the
number of clauses in F .
Transformation takes polynomial time.

Transforming an Instance
For each clause of the input formula F ,
introduce three (or two, or one) vertices
in G labeled with the literals of this
clause. Join every two of them.
Join every pair of vertices labeled with
complementary literals.
F is satisfiable if and only if G has
independent set of size equal to the
number of clauses in F .

Transformation takes polynomial time.

Transforming an Instance
For each clause of the input formula F ,
introduce three (or two, or one) vertices
in G labeled with the literals of this
clause. Join every two of them.
Join every pair of vertices labeled with
complementary literals.
F is satisfiable if and only if G has
independent set of size equal to the
number of clauses in F .
Transformation takes polynomial time.

Transforming a Solution

Given a solution S for G , just read the
labels of the vertices from S to get a
satisfying assignment of F (takes
polynomial time).

If there is no solution for G , then F is
unsatisfiable: indeed, a satisfying
assignment for F would give a required
independent set in G .

Transforming a Solution

Given a solution S for G , just read the
labels of the vertices from S to get a
satisfying assignment of F (takes
polynomial time).
If there is no solution for G , then F is
unsatisfiable: indeed, a satisfying
assignment for F would give a required
independent set in G .

Outline
1 Reductions

2 Showing NP-completeness

3 Independent Set → Vertex Cover

4 3-SAT → Independent Set

5 SAT → 3-SAT

6 All of NP → SAT

7 Using SAT-solvers

Goal
Transform a CNF formula into an
equisatisfiable 3-CNF formula. That is,
reduce a problem to its special case.

Transforming an Instance
We need to get rid of clauses of length
more than 3 in an input formula

Consider such a clause:
C = (ℓ1 ∨ ℓ2 ∨ A), where A is an OR of
at least two literals.
Introduce a fresh variable y and replace
C with the following two clauses:
(ℓ1 ∨ ℓ2 ∨ y), (y ∨ A)

The second clause is shorter than C

Repeat while there is a long clause

Transforming an Instance
We need to get rid of clauses of length
more than 3 in an input formula
Consider such a clause:
C = (ℓ1 ∨ ℓ2 ∨ A), where A is an OR of
at least two literals.

Introduce a fresh variable y and replace
C with the following two clauses:
(ℓ1 ∨ ℓ2 ∨ y), (y ∨ A)

The second clause is shorter than C

Repeat while there is a long clause

Transforming an Instance
We need to get rid of clauses of length
more than 3 in an input formula
Consider such a clause:
C = (ℓ1 ∨ ℓ2 ∨ A), where A is an OR of
at least two literals.
Introduce a fresh variable y and replace
C with the following two clauses:
(ℓ1 ∨ ℓ2 ∨ y), (y ∨ A)

The second clause is shorter than C

Repeat while there is a long clause

Transforming an Instance
We need to get rid of clauses of length
more than 3 in an input formula
Consider such a clause:
C = (ℓ1 ∨ ℓ2 ∨ A), where A is an OR of
at least two literals.
Introduce a fresh variable y and replace
C with the following two clauses:
(ℓ1 ∨ ℓ2 ∨ y), (y ∨ A)

The second clause is shorter than C

Repeat while there is a long clause

Transforming an Instance
We need to get rid of clauses of length
more than 3 in an input formula
Consider such a clause:
C = (ℓ1 ∨ ℓ2 ∨ A), where A is an OR of
at least two literals.
Introduce a fresh variable y and replace
C with the following two clauses:
(ℓ1 ∨ ℓ2 ∨ y), (y ∨ A)

The second clause is shorter than C

Repeat while there is a long clause

Running time

The running time of the transformation is
polynomial: at each iteration we replace a
clause with a shorter clause and a 3-clause.
Hence the total number of iterations is at
most the total number of literals of the initial
formula.

Correctness

Lemma
The formulas F = (ℓ1 ∨ ℓ2 ∨ A) . . . and
F ′ = (ℓ1 ∨ ℓ2 ∨ y)(y ∨ A) . . . are
equisatisfiable.

Proof
F = (ℓ1 ∨ ℓ2 ∨ A) . . .

F ′ = (ℓ1 ∨ ℓ2 ∨ y)(y ∨ A) . . .

⇒ If either ℓ1 or ℓ2 is satisfied, set y = 0.
Otherwise A must be satisfied. Then set
y = 1.

⇐ If (ℓ1 ∨ ℓ2 ∨ y)(y ∨ A) are satisfied, then
so is (ℓ1 ∨ ℓ2 ∨ A).

Transforming a Solution

Given a satisfying assignment for F ′, just
throw away the values of all new variables
(y ’s) to get a satisfying assignment of the
initial formula.

Outline
1 Reductions

2 Showing NP-completeness

3 Independent Set → Vertex Cover

4 3-SAT → Independent Set

5 SAT → 3-SAT

6 All of NP → SAT

7 Using SAT-solvers

Goal
Show that every search problem reduces to
SAT.

Instead, we show that any problem reduces
to Circuit SAT problem, which, in turn,
reduces to SAT.

Goal
Show that every search problem reduces to
SAT.

Instead, we show that any problem reduces
to Circuit SAT problem, which, in turn,
reduces to SAT.

Circuit

x y z 1

∧ ∨

¬

∨

∧

∨ output

Definition
A circuit is a directed acyclic graph of
in-degree at most 2. Nodes of in-degree 0
are called inputs and are marked by Boolean
variables and constants. Nodes of in-degree
1 and 2 are called gates: gates of in-degree 1
are labeled with NOT, gates of in-degree 2
are labeled with AND or OR. One of the
sinks is marked as output.

Circuit-SAT

Input: A circuit.
Output: An assignment of Boolean values to

the input variables of the circuit
that makes the output true.

SAT is a special case of Circuit-SAT as a
CNF formula can be represented as a circuit:

Example: (x ∨ y ∨ z)(y ∨ x)

x y z

∨¬

∨∨
∧ output

Circuit-SAT → SAT

To reduce Circuit-SAT to SAT, we need to
design a polynomial time algorithm that for a
given circuit outputs a CNF formula which is
satisfiable, if and only if the circuit is
satisfiable

Idea

Introduce a Boolean variable for each
gate
For each gate, write down a few clauses
that describe the relationship between
this gate and its direct predecessors

NOT Gates

¬g

h

(h ∨ g)(h ∨ g)

AND Gates

∧g

h1 h2

(h1 ∨ g)(h2 ∨ g)(h1 ∨ h2 ∨ g)

OR Gates

∨g

h1 h2

(h1 ∨ g)(h2 ∨ g)(h1 ∨ h2 ∨ g)

Output Gate

g output (g)

The resulting CNF formula is consistent
with the initial circuit: in any satisfying
assignment of the formula, the value of
g is equal to the value of the gate
labeled with g in the circuit

Therefore, the CNF formula is
equisatisfiable to the circuit
The reduction takes polynomial time

The resulting CNF formula is consistent
with the initial circuit: in any satisfying
assignment of the formula, the value of
g is equal to the value of the gate
labeled with g in the circuit
Therefore, the CNF formula is
equisatisfiable to the circuit

The reduction takes polynomial time

The resulting CNF formula is consistent
with the initial circuit: in any satisfying
assignment of the formula, the value of
g is equal to the value of the gate
labeled with g in the circuit
Therefore, the CNF formula is
equisatisfiable to the circuit
The reduction takes polynomial time

Goal
Reduce every search problem to Circuit-SAT.

Let A be a search problem
We know that there exists an
algorithm 𝒞 that takes an instance I
of A and a candidate solution S and
checks whether S is a solution for I in
time polynomial in |I |
In particular, |S | is polynomial in |I |

Goal
Reduce every search problem to Circuit-SAT.

Let A be a search problem

We know that there exists an
algorithm 𝒞 that takes an instance I
of A and a candidate solution S and
checks whether S is a solution for I in
time polynomial in |I |
In particular, |S | is polynomial in |I |

Goal
Reduce every search problem to Circuit-SAT.

Let A be a search problem
We know that there exists an
algorithm 𝒞 that takes an instance I
of A and a candidate solution S and
checks whether S is a solution for I in
time polynomial in |I |

In particular, |S | is polynomial in |I |

Goal
Reduce every search problem to Circuit-SAT.

Let A be a search problem
We know that there exists an
algorithm 𝒞 that takes an instance I
of A and a candidate solution S and
checks whether S is a solution for I in
time polynomial in |I |
In particular, |S | is polynomial in |I |

Turn an Algorithm into a Circuit
Note that a computer is in fact a circuit
(of constant size!) implemented on a
chip

Each step of the algorithm 𝒞(I , S) is
performed by this computer’s circuit
This gives a circuit of size polynomial
in |I | that has input bits for I and S and
outputs whether S is a solution for I
(a separate circuit for each input length)

Turn an Algorithm into a Circuit
Note that a computer is in fact a circuit
(of constant size!) implemented on a
chip
Each step of the algorithm 𝒞(I , S) is
performed by this computer’s circuit

This gives a circuit of size polynomial
in |I | that has input bits for I and S and
outputs whether S is a solution for I
(a separate circuit for each input length)

Turn an Algorithm into a Circuit
Note that a computer is in fact a circuit
(of constant size!) implemented on a
chip
Each step of the algorithm 𝒞(I , S) is
performed by this computer’s circuit
This gives a circuit of size polynomial
in |I | that has input bits for I and S and
outputs whether S is a solution for I
(a separate circuit for each input length)

Reduction

To solve an instance I of the problem A:
take a circuit corresponding to 𝒞(I , ·)

the inputs to this circuit encode
candidate solutions
use a Circuit-SAT algorithm for this
circuit to find a solution (if exists)

Reduction

To solve an instance I of the problem A:
take a circuit corresponding to 𝒞(I , ·)
the inputs to this circuit encode
candidate solutions

use a Circuit-SAT algorithm for this
circuit to find a solution (if exists)

Reduction

To solve an instance I of the problem A:
take a circuit corresponding to 𝒞(I , ·)
the inputs to this circuit encode
candidate solutions
use a Circuit-SAT algorithm for this
circuit to find a solution (if exists)

Summary

vertex cover

independent set

3-SAT

SAT

Outline
1 Reductions

2 Showing NP-completeness

3 Independent Set → Vertex Cover

4 3-SAT → Independent Set

5 SAT → 3-SAT

6 All of NP → SAT

7 Using SAT-solvers

Sudoku Puzzle

This part

A simple and efficient Sudoku solver

SAT: Theory and Practice

Theory: we have no algorithm checking the
satisfiability of a CNF formula F

with n variables in time
poly(|F |) · 1.99n

Practice: SAT-solvers routinely solve
instances with thousands of
variables

SAT: Theory and Practice

Theory: we have no algorithm checking the
satisfiability of a CNF formula F

with n variables in time
poly(|F |) · 1.99n

Practice: SAT-solvers routinely solve
instances with thousands of
variables

Solving Hard Problems in Practice

An easy way to solve a hard combinatorial
problem in practice:

Reduce the problem to SAT (many
problems are reduced to SAT in a
natural way)

Use a SAT solver

Solving Hard Problems in Practice

An easy way to solve a hard combinatorial
problem in practice:

Reduce the problem to SAT (many
problems are reduced to SAT in a
natural way)
Use a SAT solver

Sudoku Puzzle

Goal: fill in with digits the partially
completed 9× 9 grid so that each row, each
column, and each of the nine 3× 3 subgrids
contains all the digits from 1 to 9.

Example

Variables

There will be 9× 9× 9 = 729 Boolean
variables: for 1 ≤ i , j , k ≤ 9, xijk = 1, if and
only if the cell [i , j] contains the digit k

Exactly One Is True

Clauses expressing the fact that exactly one
of the literals ℓ1, ℓ2, ℓ3 is equal to 1:

(ℓ1 ∨ ℓ2 ∨ ℓ3)(ℓ1 ∨ ℓ2)(ℓ1 ∨ ℓ3)(ℓ2 ∨ ℓ3)

Constraints
Cell [i , j] contains exactly one digit:
ExactlyOneOf(xij1, xij2, . . . , xij9)

k appears exactly once in row i :
ExactlyOneOf(xi1k , xi2k , . . . , xi9k)
k appears exactly once in column j :
ExactlyOneOf(x1jk , x2jk , . . . , x9jk)

k appears exactly once in a 3× 3 block:
ExactlyOneOf(x11k , x12k , . . . , x33k)

[i , j] already contains k : (xijk)

Constraints
Cell [i , j] contains exactly one digit:
ExactlyOneOf(xij1, xij2, . . . , xij9)
k appears exactly once in row i :
ExactlyOneOf(xi1k , xi2k , . . . , xi9k)

k appears exactly once in column j :
ExactlyOneOf(x1jk , x2jk , . . . , x9jk)

k appears exactly once in a 3× 3 block:
ExactlyOneOf(x11k , x12k , . . . , x33k)

[i , j] already contains k : (xijk)

Constraints
Cell [i , j] contains exactly one digit:
ExactlyOneOf(xij1, xij2, . . . , xij9)
k appears exactly once in row i :
ExactlyOneOf(xi1k , xi2k , . . . , xi9k)
k appears exactly once in column j :
ExactlyOneOf(x1jk , x2jk , . . . , x9jk)

k appears exactly once in a 3× 3 block:
ExactlyOneOf(x11k , x12k , . . . , x33k)

[i , j] already contains k : (xijk)

Constraints
Cell [i , j] contains exactly one digit:
ExactlyOneOf(xij1, xij2, . . . , xij9)
k appears exactly once in row i :
ExactlyOneOf(xi1k , xi2k , . . . , xi9k)
k appears exactly once in column j :
ExactlyOneOf(x1jk , x2jk , . . . , x9jk)

k appears exactly once in a 3× 3 block:
ExactlyOneOf(x11k , x12k , . . . , x33k)

[i , j] already contains k : (xijk)

Constraints
Cell [i , j] contains exactly one digit:
ExactlyOneOf(xij1, xij2, . . . , xij9)
k appears exactly once in row i :
ExactlyOneOf(xi1k , xi2k , . . . , xi9k)
k appears exactly once in column j :
ExactlyOneOf(x1jk , x2jk , . . . , x9jk)

k appears exactly once in a 3× 3 block:
ExactlyOneOf(x11k , x12k , . . . , x33k)

[i , j] already contains k : (xijk)

Resulting Formula

State-of-the-art SAT-solvers find a satisfying
assignment for the resulting formula in blink
of an eye, though the corresponding search
space has size about 2729 ≈ 10220

	Reductions
	Showing NP-completeness
	Independent Set Vertex Cover
	3-SAT Independent Set
	SAT 3-SAT
	All of NP SAT
	Using SAT-solvers

