
Efficient Multi-View Reconstruction of Large-Scale Scenes
using Interest Points, Delaunay Triangulation and Graph Cuts

Patrick Labatut1 Jean-Philippe Pons1,2 Renaud Keriven1,2

1 Département d’informatique 2 CERTIS
École normale supérieure École des ponts

Paris, France Marne-la-Vallée, France
labatut@di.ens.fr pons@certis.enpc.fr keriven@certis.enpc.fr

Abstract

We present a novel method to reconstruct the 3D shape
of a scene from several calibrated images. Our motivation
is that most existing multi-view stereovision approaches re-
quire some knowledge of the scene extent and often even
of its approximate geometry (e.g. visual hull). This makes
these approaches mainly suited to compact objects admit-
ting a tight enclosing box, imaged on a simple or a known
background. In contrast, our approach focuses on large-
scale cluttered scenes under uncontrolled imaging condi-
tions. It first generates a quasi-dense 3D point cloud of
the scene by matching keypoints across images in a lenient
manner, thus possibly retaining many false matches. Then
it builds an adaptive tetrahedral decomposition of space by
computing the 3D Delaunay triangulation of the 3D point
set. Finally, it reconstructs the scene by labeling Delaunay
tetrahedra as empty or occupied, thus generating a triangu-
lar mesh of the scene. A globally optimal label assignment,
as regards photo-consistency of the output mesh and com-
patibility with the visibility of keypoints in input images, is
efficiently found as a minimum cut solution in a graph.

1. Introduction
1.1. Motivation

As pointed out in the review by Seitz et al. [33], most
top-performing algorithms for dense multi-view stereo re-
construction require significant knowledge of the geometry
of the scene. This ranges from a tight bounding box to a
closer approximation by the visual hull.

The visual hull is defined as the intersection of cones
generated by the silhouettes of the objects in the input views
[26]. This technique requires an accurate segmentation of
input images. In real-life examples, however, such seg-
mentation is not available or even feasible. In practice, vi-

sual hull computation only applies to datasets obtained un-
der controlled imaging conditions, namely on a simple or a
known background.

Despite this serious limitation, in the last few years,
a number of multi-view stereovision algorithms exploit-
ing visual hull have been proposed. They rely on vi-
sual hull either as an initial guess for further optimiza-
tion [16, 12, 20, 36, 40, 42, 44], as a soft constraint [12]
or even as a hard constraint [16, 35] to be fulfilled by the
reconstructed shape.

While the unavailability of silhouette information dis-
cards many of the top-performing multi-view stereovision
algorithms, the requirement for the ability to handle large-
scale scenes discards most of the others, and in particular
volumetric methods, i.e. methods based on a regular de-
composition of the domain into elementary cells, typically
voxels. Obviously, this approach is mainly suited to com-
pact objects admitting a tight enclosing box, as its computa-
tional and memory cost quickly becomes prohibitive when
the size of the domain increases.

Volumetric multi-view stereovision methods include
space carving [9, 25, 34, 41, 43], level sets [13, 21, 32],
and volumetric graph cuts [8, 20, 27, 36, 40, 42]. Actually,
what distinguishes these three categories is the type of op-
timization they rely on: a greedy occupancy assignment in
space carving, a surface deformation driven by a gradient
descent in level sets, and a global combinatorial optimiza-
tion in graph cuts.

Large-scale cluttered scenes for which no reliable ini-
tial guess of geometry is available also disqualify the de-
formable model framework [11, 13, 12, 21, 28, 32]. Indeed,
it is based on a local optimization by gradient descent. As a
result, it is highly sensitive to initial conditions.

The multi-view stereovision methods which have proven
more adapted to reconstruct large-scale scenes (e.g. out-
dor architectural scenes) are those representing geometry by
several depth maps [18, 17, 23, 37, 38, 39]. However, their



performance for complete reconstruction seems to be lower
than previously discussed approaches, either as regards ac-
curacy or completeness of the obtained model. This may be
due to the difficulty to handle visibility globally and consis-
tently in this approach. Moreover, in the complete recon-
struction case, the several partial models of the scene have
to be fused at post-processing using a volumetric technique
[10].

From the above discussion, we draw the conclusion that,
although very impressive progress has been made in the last
few years in the multi-view stereovision problem as regards
reconstruction accuracy, novel algorithms that can handle
more general scenes are still needed.

1.2. Novelty of our approach

In this paper, we propose a novel multi-view reconstruc-
tion approach adapted to large-scale cluttered scenes under
uncontrolled imaging conditions. Our method first gener-
ates a quasi-dense 3D point cloud of the scene by match-
ing keypoints across images in a lenient manner, thus pos-
sibly retaining many false matches. Then it builds an adap-
tive tetrahedral decomposition of space by computing the
3D Delaunay triangulation of the 3D point set. Finally, it
reconstructs the scene by labeling Delaunay tetrahedra as
empty or occupied and in this way generates a triangular
mesh of the scene. A globally optimal label assignment,
as regards photo-consistency of the output mesh and com-
patibility with the visibility of keypoints in input images, is
efficiently found as a minimum cut solution in a graph.

Our method shares with existing multi-view graph cuts
approaches [8, 16, 20, 23, 27, 35, 36, 40, 42] the desirable
property of yielding an exact global optimum of an energy
functional. Compared to these methods, however, our ap-
proach enjoys a unique combination of desirable features:

1. It uses a fully adaptive unstructured tetrahedral decom-
position of space, namely the Delaunay triangulation
of a quasi-dense point sample of the surface of the
scene, in constrast with a regular subdivision used in
volumetric graph cuts [8, 20, 27, 36, 40, 42]. This
yields several significant benefits:

• with a dense enough sample of the surface, it al-
leviates quantization artifacts, namely the stair-
casing effect.

• like other complex-based method [8, 20, 27],
it allows to directly output a quality triangular
mesh of the scene, free of self-intersections.

• without any knowledge of the scene geometry, it
keeps the computation and memory cost sustain-
able on large-scale scenes, since empty space re-
gions are represented by few large tetrahedra.

2. It exploits visibility information coming from key-
points to guide the position of the surface. As a re-
sult, it avoids the mininum cut solution from being an
empty surface. Hence it exonerates from the differ-
ent techniques proposed in the literature so far to solve
this problem: a heuristic ballooning term [27, 42], a
restriction of the feasible set using silhouette infor-
mation [16, 20, 35, 36, 40, 44], or a maximization of
photo-flux [8]. Moreover, this visibility information is
not enforced as a hard constraint but integrated in the
very optimization framework, hence yielding robust-
ness to outliers.

3. It can handle closed as well as open scenes. For ex-
ample, it can simultaneously recover the walls of an
indoor scene and a complete reconstruction of objects
seen from all sides in the input images.

The remainder of this paper is organized as follows. Sec-
tion 2 gives some background on the different techniques
needed in our approach: interest point detectors, Delaunay
triangulation and graph cuts. In Section 3, we describe in
detail the different steps of our multi-view stereo recon-
struction algorithm. Section 4 discusses implementation as-
pects and presents some numerical experiments that demon-
strate the potential of our approach for reconstructing large-
scale cluttered scenes from real-world data.

2. Background

2.1. Keypoint extraction and description

Our method relies on the extraction of robust keypoints
that can be matched across different viewpoints: we use the
keypoint extraction and description method of Lowe [30].
The first stage of the Scale-invariant feature transform
(SIFT) searches for scale-space extrema in the difference-
of-Gaussian function convolved with the image in order to
find interest points [29]. The second stage associates a de-
scriptor (a high dimension vector) to each keypoint localiza-
tion: this descriptor represents the distributions of smaller
scale features in the neighbourhood of the detected point,
it is invariant to scale and rotation and is robust to small
affine or projective deformations and illumination changes.
It has also been shown to perform among the very best de-
scriptors [31] and has become one of the most widely used
descriptor in practice nowadays, justifying our choice.

2.2. Delaunay triangulation

The following definitions are taken from a computational
geometry textbook [6]. Let P = {p1, . . . , pn} be a set of
points in Rd. The Voronoi cell associated to a point pi, de-
noted by V (pi), is the region of space that is closer from pi



Figure 1. The Voronoi diagram (gray edges) of a set of 2D points
(red dots) and its associated Delaunay triangulation (black edges).

than from all other points in P:

V (pi) = { p ∈ Rd : ∀ j 6= i, ‖p− pi‖ ≤ ‖p− pj‖ }

V (pi) is the intersection of n−1 half-spaces bounded by the
bisector planes of segments [pipj ], j 6= i. V (pi) is there-
fore a convex polytope, possibly unbounded. The Voronoi
diagram of P , denoted by Vor(P), is the partition of space
induced by the Voronoi cells V (pi).

The Delaunay triangulation Del(P) of P is defined as
the geometric dual of the Voronoi diagram: there is an edge
between two points pi and pj in the Delaunay triangulation
if and only if their Voronoi cells V (pi) and V (pj) have a
non-empty intersection. It yields a triangulation ofP , that is
to say a partition of the convex hull of P into d-dimensional
simplices (i.e. into triangles in 2D, into tetrahedra in 3D,
and so on). Figure 1 displays an example of a Voronoi dia-
gram and its associated Delaunay triangulation in the plane.

The algorithmic complexity of the Delaunay triangula-
tion of n points isO(n log n) in 2D, andO(n2) in 3D. How-
ever, as was recently proven in [2], the complexity in 3D
drops to O(n log n) when the points are distributed on a
smooth surface, which is the case of interest here.

Our choice of Delaunay triangulation as a space sub-
division for multi-view stereo reconstruction is motivated
by the following remarkable property: under some assump-
tions, and especially if P is a “sufficiently dense” sample of
a surface, in some sense defined in [1], then a good approxi-
mation of the surface is “contained” in Del(P), in the sense
that the surface can be accurately reconstructed by selecting
an adequate subset of the triangular facets of the Delaunay
triangulation.

2.3. Energy minimization by graph cuts

Given a finite directed graph G = (V, E) with nodes
V and edges E with non-negative weights (capacities), and
two special vertices, the source s and the sink t, an s-t-cut
C = (S, T ) is a partition of V into two disjoints sets S

and T such that s ∈ S and t ∈ T . The cost of the cut
is the sum of the capacity of all the edges going from S to
T : c(S, T ) =

∑
(p,q)∈S×T |p→q∈E wpq . The minimum s-

t-cut problem consists in finding a cut C with the smallest
cost: the Ford-Fulkerson theorem [14] states that this prob-
lem is equivalent to computing the maximum flow from the
source s to the sink t and many classical algorithms exist to
efficiently solve this problem. Such a cut can be viewed as
a binary labeling of the nodes: by building an appropriate
graph, many segmentation problems in computer vision can
be solved very efficiently [19]. More generally, global min-
imization of a whole class of energy is achievable by graph
cuts [24].

Kirsanov and Gortler [22] first proposed to use graph
cut on complexes to globally optimize surface functionals
and also developed the idea of using random sparse com-
plexes for their flexibility over regular subdivisions: this
differs from the graphs commonly used in computer vision,
which are often regular grids in the input images or in the
bounding volume of the scene. Our approach similarly re-
lies on a sparse complex-based graph: this graph however
directly derives from an adaptive space decomposition effi-
ciently provided by the Delaunay triangulation. Moreover
the specifics of our graph construction are quite different
and tailored to the multi-view reconstruction problem.

3. Reconstruction method

Our algorithm can be decomposed in four main steps:
the first step is straightforward as it reduces to extract-
ing features from the input views. The keypoints are then
matched pair-wise between different views by taking epipo-
lar geometry into account: these matches enable the genera-
tion a quasi-dense 3D point cloud, which is later refined and
structured by incrementally building a Delaunay triangula-
tion and merging 3D points that are close enough. Finally a
graph cut optimization is used to extract the surface of the
scene from this triangulation.

3.1. Quasi-dense 3D point cloud generation

The first step in our method is the generation of a quasi-
dense 3D point cloud. To this end, pairs of keypoints are
matched across different views. The usual way of obtain-
ing robust matches is, given one keypoint, to find the best
match in the other image, and to keep it provided its match-
ing score is significantly better than the second best match-
ing score. Here, however, as the global optimization in the
final step is able to cope with false matches, we favor den-
sity over robustness and we admit a lot of false positives.
To achieve this, given one keypoint, we always keep the
best match along the epipolar line, plus we keep all other
matches along the epipolar line whose matching scores are
not significantly lower than the best match. This step out-



the nearest vertex

a new vertex

update

insert

Figure 2. A candidate point (blue cross) updates the Delaunay tri-
angulation depending on the maximum reprojection error between
it and the nearest vertex: either it is inserted as a new vertex, or it
updates the position of the nearest vertex.

puts a 3D point cloud by computing the 3D position associ-
ated to each match.

3.2. Match aggregation and Delaunay triangulation

The next step in our method consists in adding some
structure to the previous 3D point cloud, while efficiently
aggregating matches in tuples. This is accomplished by
incrementally building a Delaunay triangulation of the 3D
point set. Each vertex of the triangulation does not only
store its position, it also maintains the list of keypoints it
originates from. Each time a candidate point from the orig-
inal 3D point cloud is to be added, its nearest neighbour in
the triangulation is found (this query is very efficient in a
Delaunay triangulation [5]) and the maximum reprojection
error between the two 3D points is computed.

As illustrated in Figure 2, two different cases can occur.
If the maximum reprojection error is above some threshold,
the candidate point is regarded as a distinct point and is in-
serted in the Delaunay triangulation. If the error is below
the threshold, the candidate point is not inserted in the De-
launay triangulation. Instead, the nearest vertex is updated:
first, the list of keypoints it originates from is complemented
with the two keypoints from which the candidate point was
generated, then its position is recomputed using its updated
keypoint list, and the Delaunay triangulation is modified ac-
cordingly, if needed.

This step outputs a Delaunay triangulation, whose ver-
tices store a keypoint tuple and the best-fit corresponding
3D position. Note that the size of keypoint tuples is related
to the confidence of 3D points, since false matches are un-
likely to aggregate into large tuples.

3.3. Surface extraction

The final step in our method consists in labeling each
tetrahedron of the Delaunay triangulation as inside or out-
side of the scene. The output triangular mesh is then ob-
tained by taking the triangular facets between adajacent

tetrahedra having different labels. This constrains the re-
constructed surface to be included in the Delaunay triangu-
lation. This is not a limitation, however, as soon as the point
cloud is sufficiently dense, as discussed in Section 2.2.

A globally optimal label assignment is efficiently found
using graph cuts. To this end, we consider the dual graph to
the Delaunay triangulation, in other words, the graph whose
vertices correspond to Delaunay tetrahedra, and whose
edges correspond to the triangular facets between adajacent
tetrahedra. Actually, this coincides with the vertices and
edges of the Voronoi diagram of the point set. In addition,
there are links between each vertex of the graph (i.e. each
Delaunay tetrahedron) and the sink and the source.

In the sequel, we note S the surface to be reconstructed.
As discussed above, S is a union of Delaunay triangles. We
wish to minimize an energy functional composed of three
terms, one dealing with visibility, one dealing with photo-
consistency and one dealing with surface smoothness:

E(S) = Evis(S)+λphoto Ephoto(S)+λarea Earea(S) (1)

where λphoto and λarea are positive weights. In the rest of
this section, we give the exact definition of each energy term
and we describe how it can be implemented in the graph
cuts framework.

3.3.1 Surface visibility

Each vertex in the triangulation keeps some visibility infor-
mation: the keypoint tuple from which it was reconstructed
(this tuple can contain as little as two keypoints or as many
tuples as the total number of input views if the point was the
result of multiple merges). This information is decisive to
design the Evis(S) term: if some vertex belongs to the final
surface then it should be visible in the views it comes from.
Consequently, all the tetrahedra intersected by a ray ema-
nating from the vertex to the camera center of one of these
views should be labelled as outside (and the tetrahedron be-
hind the vertex should be labelled as inside): in Figure 3, ac-
cording to the blue ray and vertex, the q2 tetrahedron should
be labelled as inside and all the other shown tetrahedra as
outside.

The following term: Evis(S) = λvis #{ray conflicts},
where a ray from a vertex to a camera center is in conflict if
it intersects a tetrahedron labelled as inside, naturally comes
to mind. Unfortunately, such energy term is not suitable for
graph cut optimization, as it would require complex inter-
actions between more than two nodes in the graph [15, 24].

Instead, the number of intersections of the ray with the
oriented surface will be used (only ray crossings of a trian-
gle from the inside to the outside are to be penalized). The
surface should also go through the vertex originating the
ray and the last tetrahedron traversed by the ray should be
labelled as outside. The construction of the corresponding



visibility term for one ray is detailled in Figure 3 with the
usual notation Dp(.) for data terms and Vpq(., .) for neigh-
bouring terms. Note that the subterm Vp2q2 cannot be trans-
lated to weights in the graph because the tetrahedra whose
nodes are p and q do not share a triangle and the nodes p
and q are thus not linked in the graph. Fortunately this term
only amounts to a link to the sink with weight wq2t = λin.
The positive weights λin, λout and λ∞ take into account the
confidence in the reconstructed vertex yielding the ray.

The global visibility term sums all the contributions of
the rays cast by all the vertices of the triangulations (the
corresponding weights of the edges of the graph are accu-
mulated the same way): it gives a complex distribution of
“votes” for each tetrahedron to be inside or outside the sur-
face and only the tetrahedra containing the cameras get a
non 0-weighted link to the source.

Note that the edges for the origin and for the end of the
ray (with weights λin and λ∞ respectively) can straightfor-
wardly be adjusted (thanks to the Delaunay triangulation) to
allow the reconstruction of, for instance, the walls of an in-
door scene: not only finite tetrahedra can be used as nodes
in the graph but also infinite tetrahedra (which have three
vertices on the convex hull of the 3D point cloud and share
an infinite vertex). . .

3.3.2 Surface photo-consistency

The photo-consistency term Ephoto(S) of our energy mea-
sures how well the given surface S matches the different
input images in which it is seen. It is defined as the sum
over the whole surface of some photo-consistency measure
ρ ≥ 0 (in our case, every triangle of the surface has a uni-
form photo-consistency):

Ephoto(S) =
∫
S
ρdS =

∑
T∈S

ρ(T )A(T ) (2)

The photo-consistency of each triangle is computed only in
the views from which its three vertices were reconstructed.
Furthermore, as a triangle of the surface S lies by definition
on the interface between the inside and the outside of the re-
constructed object(s), its orientation needs to be taken into
account: an “oriented photo-consistency” is used, which
means that the two possible orientations of a given trian-
gle get different photo-consistencies, each computed only
in the subset of the considered views compatible with the
given orientation of the triangle.

This maps pretty easily onto the graph cuts framework:
for each directed pair of tetrahedra (represented by nodes p
and q in the graph) which shares a triangle T with normal
~n (pointing from tetrahedron p to tetrahedron q), an edge
p → q is added with a weight wpq = ρ{Πi|~di.~n>0}(T ),

where ~di is the direction from the center of the triangle to
the center of the i-th camera Πi.

3.3.3 Surface smoothness

Surface smoothness is encouraged by minimizing the area
of the surface. Hence it is the simplest term of our energy:

Earea(S) = A(S) =
∫
S

dS =
∑
T∈S
A(T ) (3)

This is also trivially minimized in the graph cuts framework:
for each pair of tetrahedra (sharing a triangle T ) represented
by nodes p and q in our graph, an edge p → q is added
with a weight wpq = A(T ) and, similarly, an opposite edge
q → p with the same weight wqp = wpq is also added.

4. Experimental results
4.1. Implementation aspects

First, keypoints are extracted from the images with the
SIFT keypoint detector1.

Then, the Delaunay triangulation is computed using the
Computational Geometry Algorithms Library (CGAL)2 [5].
CGAL defines all the needed geometric primitives and pro-
vides an excellent algorithm to compute the Delaunay tri-
angulation in 3D: it is robust to degenerate configurations
and floating-point error, thanks to the use of exact geomet-
ric predicates, while being able to process millions of points
per minute on a standard workstation. It provides all the el-
ementary operations needed in our algorithm: vertex inser-
tion, vertex move, nearest vertex query and various traver-
sals of the triangulation.

The photo-consistency is evaluated with a software ras-
terizer with sweeps the projection of each triangle of the
Delaunay triangulation in the chosen views and computes
the mean of the color variance of the pixels in this triangle.

Finally we compute the minimum s-t-cut of the graph
we designed using the software3 described in [7] which is
in fact better suited for regular grid-based graphs more com-
monly found in computer vision.

Our implementation currently leaves some room for im-
provement in term of computational speed: leaving aside
the time required to extract the keypoints, it can take (on an
Intel R©CoreTM2 Duo 2.13 GHz PC) as little as a minute and
a half to reconstruct a scene from a ∼ 50 images dataset
to a few dozens minutes from a ∼ 300 images dataset de-
pending on the number of input keypoints to match. Fortu-
nately our method is versatile: we can use any type of fea-
tures as input and we could switch to lighter features such
as SURF [3]. The matching of keypoints is done by brute
force so most of the above computational time is actually
spent on feature matching alone: this could be improved by

1http://www.cs.ubc.ca/˜lowe/keypoints/
2http://www.cgal.org/
3http://www.adastral.ucl.ac.uk/˜vladkolm/

software.html



p0 p2

q2

q2

p0 p1

q1 p2

p1 q1 q2

surface

vertexcamera
center

ray

~

G
ra

ph
 w

ei
gh

ts

En
er

gy
 te

rm

De
la

un
ay

 tr
ia

ng
ul

at
io

n

s

t

ss

t t

s

t
λin

Dp0(0) = 0 Vp1q1(0, 1) = λout Vp2q2(0, 0) = Vp2q2(1, 0) = λin Dq2(0) = λin

λin

λoutλ∞

Dp0(1) = λ∞ Vp1q1(0, 0) = Vp1q1(1, 0) = Vp1q1(1, 1) = 0 Vp2q2(0, 1) = Vp2q2(1, 1) = 0 Dq2(1) = 0

Figure 3. A ray emanating from a vertex to a camera center (and the putative surface), the corresponding visibility-related energy term that
penalizes the number of intersections with the ray (the label 0 means s / “outside” and the label 1 means t / “inside”) and the edge weights
of the crossed tetrahedra in the graph.

Figure 4. Some images of the temple dataset and our results.

resorting to a more adapted nearest neighbour search [4].
Lastly the photo-consistency computation may take advan-
tage of modern graphics hardware.

4.2. Temple

The first experiment (shown in Figure 4.2) uses the 312
views temple dataset from the review of Seitz et al. [33].

It shows that our approach is flexible and while able to re-
construct large-scale scenes, it can still cope with more tra-
ditional multi-view stereo without using any of the usual
clues that most high-precision algorithms would require.
Also recall that the output surface depends on the 3D point
cloud reconstructed from matched features, so regions with-
out many matched keypoints are reconstructed as large tri-
angles whereas densily sampled regions are more detailed.

4.3. Toys

The data for the second experiment (shown in Figure 4.3)
was acquired with a consumer-grade handheld DV cam-
corder shooting soft toys laid on a table; one frame out of
ten was extracted from the video sequence resulting in a
237 views dataset and calibration was done with a track-
ing software. The imaging conditions were absolutely not
controlled, many of the images show large specular high-
lights on the tablecloth. No additional stabilizer was used
and besides motion blur, many important color subsampling
and aliasing artifacts due to video compression require-
ments are clearly noticeable. Despite such a hard dataset,
our algorithm was able to reconstruct the table and the soft
toys showing its robustness and its ability to cope with a
large-scale cluttered scene without any additional informa-
tion about its extent. Note that some small details compared
the global scale of the scene are still recovered (the anten-
nas, the ears or the tail of some of the soft toys, for instance)
but areas that lack matchable features are less accurately re-
constructed.



Figure 5. Some images of the toys dataset, examples showing the
realistic imaging conditions / acquisition artifacts (shadows and
specularities / motion blur, aliasing and color subsampling) and
our results.

5. Conclusion and future work

We have presented a new multi-view reconstruction
method adapted to large-scale cluttered scenes under un-
controlled imaging conditions. First a quasi-dense 3D point
cloud of the scene is generated by matching keypoints
across different views. An adaptive tetrahedral decompo-
sition of the space is then built by means of a Delaunay
triangulation of the 3D point set. Finally the scene is recon-
structed by labeling the tetrahedra as empty or occupied us-
ing an assignement globally optimal as to photo-consistency
of the output mesh and compatibility with the visibility of
the matched keypoints. This new approach is free from nu-
merous restrictions of previous reconstruction algorithms: it

does not require any knowledge of the extent of the scene,
it can deal with large-scale scenes at a reasonable computa-
tional cost, it exploits visibility information from keypoints
to guide the position of the surface in a robust way, lastly, it
can handle closed and open scenes.

We have demonstrated our method on real data: a clas-
sical dataset acquired in a controlled setup and a new real-
world data set showing the efficiency of our method in han-
dling difficult imaging conditions. The experimental results
shown are quite promising and we are looking forward to
evaluating our approach on other challenging data sets. We
also expect to greatly improve the computation time of our
implementation. Ultimately, our method could be incorpo-
rated into a full reconstruction system in which the feature
extraction and matching step would be shared between cal-
ibration and reconstruction.

References
[1] N. Amenta and M. Bern. Surface reconstruction by Voronoi

filtering. Discrete and Computational Geometry, 22:481–
504, 1999.

[2] D. Attali, J.-D. Boissonnat, and A. Lieutier. Complexity of
the Delaunay triangulation of points on surfaces: the smooth
case. In Annual Symposium on Computational Geometry,
pages 201–210, 2003.

[3] H. Bay, T. Tuytelaars, and L. V. Gool. SURF: Speeded up ro-
bust features. In European Conference on Computer Vision,
2006.

[4] J. S. Beis and D. G. Lowe. Shape indexing using approx-
imate nearest-neighbour search in high-dimensional spaces.
In IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 1000–1006, 1997.

[5] J.-D. Boissonnat, O. Devillers, M. Teillaud, and M. Yvinec.
Triangulations in CGAL. In Annual Symposium on Compu-
tational Geometry, pages 11–18, 2000.

[6] J.-D. Boissonnat and M. Yvinec. Algorithmic Geometry,
chapter Voronoi diagrams: Euclidian metric, Delaunay com-
plexes, pages 435–443. Cambridge University Press, 1998.

[7] Y. Boykov and V. Kolmogorov. An experimental comparison
of min-cut/max-flow algorithms for energy minimization in
vision. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 26(9):1124–1137, 2004.

[8] Y. Boykov and V. Lempitsky. From photohulls to photoflux
optimization. In British Machine Vision Conference, vol-
ume 3, pages 1149–1158, 2006.

[9] A. Broadhurst, T. W. Drummond, and R. Cipolla. A proba-
bilistic framework for space carving. In IEEE International
Conference on Computer Vision, volume 1, pages 388–393,
2001.

[10] B. Curless and M. Levoy. A volumetric approach for building
complex models from range images. In ACM SIGGRAPH,
pages 303–312, 1996.

[11] Y. Duan, L. Yang, H. Qin, and D. Samaras. Shape recon-
struction from 3D and 2D data using PDE-based deformable
surfaces. In European Conference on Computer Vision, vol-
ume 3, pages 238–251, 2004.



[12] C. H. Esteban and F. Schmitt. Silhouette and stereo fusion
for 3D object modeling. Computer Vision and Image Under-
standing, 96(3):367–392, 2004.

[13] O. Faugeras and R. Keriven. Variational principles, sur-
face evolution, PDE’s, level set methods and the stereo prob-
lem. IEEE Transactions on Image Processing, 7(3):336–344,
1998.

[14] L. R. Ford and D. R. Fulkerson. Flows in Networks. 1962.
[15] D. Freedman and P. Drineas. Energy minimization via graph

cuts: Settling what is possible. In IEEE Conference on Com-
puter Vision and Pattern Recognition, 2005.

[16] Y. Furukawa and J. Ponce. Carved visual hulls for image-
based modeling. In European Conference on Computer Vi-
sion, volume 1, pages 564–577, 2006.

[17] P. Gargallo and P. Sturm. Bayesian 3D modeling from im-
ages using multiple depth maps. In IEEE Conference on
Computer Vision and Pattern Recognition, volume 2, pages
885–891, 2005.

[18] M. Goesele, B. Curless, and S. M. Seitz. Multi-view stereo
revisited. In IEEE Conference on Computer Vision and Pat-
tern Recognition, volume 2, pages 2402–2409, 2006.

[19] D. M. Greig and B. T. P. A. H. Seheult. Exact maxi-
mum a posteriori estimation for binary images. Journal
of the Royal Statistical Society, Series B, Methodological,
51(2):271–279, 1989.

[20] A. Hornung and L. Kobbelt. Hierarchical volumetric multi-
view stereo reconstruction of manifold surfaces based on
dual graph embedding. In IEEE Conference on Computer
Vision and Pattern Recognition, volume 1, pages 503–510,
2006.

[21] H. Jin, S. Soatto, and A. J. Yezzi. Multi-view stereo recon-
struction of dense shape and complex appearance. The Inter-
national Journal of Computer Vision, 63(3):175–189, 2005.

[22] D. Kirsanov and S. J. Gortler. A discrete global minimiza-
tion algorithm for continuous variational problems. Techni-
cal Report TR-14-04, Harvard Computer Science, jul 2004.

[23] V. Kolmogorov and R. Zabih. Multi-camera scene recon-
struction via graph cuts. In European Conference on Com-
puter Vision, volume 3, pages 82–96, 2002.

[24] V. Kolmogorov and R. Zabih. What energy functions can be
minimized via graph cuts? IEEE Transactions on Pattern
Analysis and Machine Intelligence, 26(2):147–159, 2004.

[25] K. N. Kutulakos and S. M. Seitz. A theory of shape by
space carving. The International Journal of Computer Vi-
sion, 38(3):199–218, 2000.

[26] A. Laurentini. The visual hull concept for silhouette-based
image understanding. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 16(2):150–162, 1994.

[27] V. Lempitsky, Y. Boykov, and D. Ivanov. Oriented visibility
for multiview reconstruction. In European Conference on
Computer Vision, volume 3, pages 225–237, 2006.

[28] M. Lhuillier and L. Quan. A quasi-dense approach to surface
reconstruction from uncalibrated images. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 27(3):418–
433, 2005.

[29] D. G. Lowe. Object recognition from local scale-invariant
features. In IEEE International Conference on Computer Vi-
sion, pages 1150–1157, 1999.

[30] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. The International Journal of Computer Vision,
60(2):91–110, 2004.

[31] K. Mikolajczyk and C. Schmid. A performance evaluation
of local descriptors. IEEE Transactions on Pattern Analysis
& Machine Intelligence, 27(10):1615–1630, 2005.

[32] J.-P. Pons, R. Keriven, and O. Faugeras. Multi-view stereo
reconstruction and scene flow estimation with a global
image-based matching score. The International Journal of
Computer Vision, 72(2):179–193, 2007.

[33] S. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski.
A comparison and evaluation of multi-view stereo recon-
struction algorithms. In IEEE Conference on Computer Vi-
sion and Pattern Recognition, volume 1, pages 519–526,
2006.

[34] S. M. Seitz and C. R. Dyer. Photorealistic scene reconstruc-
tion by voxel coloring. The International Journal of Com-
puter Vision, 35(2):151–173, 1999.

[35] S. Sinha and M. Pollefeys. Multi-view reconstruction us-
ing photo-consistency and exact silhouette constraints: A
maximum-flow formulation. In IEEE International Confer-
ence on Computer Vision, volume 1, pages 349–356, 2005.

[36] J. Starck, G. Miller, and A. Hilton. Volumetric stereo with
silhouette and feature constraints. British Machine Vision
Conference, 3:1189–1198, 2006.

[37] C. Strecha, R. Fransens, and L. V. Gool. Wide-baseline
stereo from multiple views: a probabilistic account. In IEEE
Conference on Computer Vision and Pattern Recognition,
volume 2, pages 552–559, 2004.

[38] C. Strecha, R. Fransens, and L. V. Gool. Combined depth
and outlier estimation in multi-view stereo. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, volume 2,
pages 2394–2401, 2006.

[39] C. Strecha, T. Tuytelaars, and L. V. Gool. Dense matching of
multiple wide-baseline views. In IEEE International Con-
ference on Computer Vision, volume 2, pages 1194–1201,
2003.

[40] S. Tran and L. Davis. 3D surface reconstruction using graph
cuts with surface constraints. In European Conference on
Computer Vision, volume 2, pages 219–231, 2006.

[41] A. Treuille, A. Hertzmann, and S. M. Seitz. Example-based
stereo with general BRDFs. In European Conference on
Computer Vision, volume 2, pages 457–469, 2004.

[42] G. Vogiatzis, P. H. S. Torr, and R. Cipolla. Multi-view stereo
via volumetric graph-cuts. In IEEE Conference on Computer
Vision and Pattern Recognition, volume 2, pages 391–398,
2005.

[43] R. Yang, M. Pollefeys, and G. Welch. Dealing with texture-
less regions and specular highlights: A progressive space
carving scheme using a novel photo-consistency measure.
In IEEE International Conference on Computer Vision, vol-
ume 1, pages 576–584, 2003.

[44] T. Yu, N. Ahuja, and W.-C. Chen. SDG cut: 3D reconstruc-
tion of non-lambertian objects using graph cuts on surface
distance grid. In IEEE Conference on Computer Vision and
Pattern Recognition, volume 2, pages 2269–2276, 2006.


