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Abstract

In this paper, we propose an efficient multi-scale geo-
metric consistency guided multi-view stereo method for ac-
curate and complete depth map estimation. We first present
our basic multi-view stereo method with Adaptive Checker-
board sampling and Multi-Hypothesis joint view selection
(ACMH). It leverages structured region information to sam-
ple better candidate hypotheses for propagation and infer
the aggregation view subset at each pixel. For the depth es-
timation of low-textured areas, we further propose to com-
bine ACMH with multi-scale geometric consistency guid-
ance (ACMM) to obtain the reliable depth estimates for
low-textured areas at coarser scales and guarantee that they
can be propagated to finer scales. To correct the erroneous
estimates propagated from the coarser scales, we present
a novel detail restorer. Experiments on extensive datasets
show our method achieves state-of-the-art performance, re-
covering the depth estimation not only in low-textured areas
but also in details.

1. Introduction

Multi-view stereo (MVS) has traditionally been a topic
of interest in computer vision for decades. It aims at es-
tablishing dense correspondence from multiple calibrated
images, which results in a dense 3D reconstruction. Over
the last few years, much effort has been put into improv-
ing the quality of dense 3D reconstructions and some works
have achieved impressive results [7, 8, 9, 23, 24, 25, 36, 19].
However, with the large-scale data, low texture, occlusions,
repetitive patterns and reflective surface, it is still a chal-
lenging problem to perform efficient and accurate multi-
view stereo in computer vision domain.

Recently, PatchMatch Stereo methods [1, 36, 8, 19] show
great power in depth map estimation with their fast global
search for the best match in other images [2]. These meth-
ods follow a popular four-step pipeline, including random
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Figure 1. Propagation scheme. (a) Sequential propagation. (b)
Symmetric checkerboard propagation. (c) Adaptive checkerboard
propagation. The light red areas in (c) show sampling regions. The
solid yellow circles in (b) and (c) show the sampled points.

initialization, propagation, view selection and refinement.
In this pipeline, propagation and view selection are two key
steps to PatchMatch Stereo methods. The former is impor-
tant to efficiency while the latter is critical to accuracy.

For propagation, there generally exist two distinct types
of parallel schemes: sequential propagation [1, 36, 19] and
diffusion-like propagation [8]. The former traverses pixels
following parallel scanlines only in the vertical (or horizon-
tal) direction (Figure 1(a)). In contrast, the later simulta-
neously updates the status of half of the pixels in an image
with a checkerboard pattern (Figure 1(b)). In terms of effi-
ciency, the diffusion-like propagation achieves better algo-
rithm parallelism. However, it is reported in [19, 21] that, its
reconstruction results are not competitive with the sequen-
tial propagation’s in some challenging cases. As pointed out
in [36], this mainly attributes to its less robust view selection
instead of propagation. For example, in the sequential prop-
agation, [36, 19] construct a probabilistic graphical model
to perform pixelwise view selection. Unlike their elabo-
rate view selection, the diffusion-like propagation adopts a
simple threshold truncation scheme to determine aggrega-
tion view subsets [8]. This leads to its biased view selec-
tion for different hypotheses. Then a motivating question
is, whether it is possible to design a more robust view selec-
tion based on the checkerboard pattern.

To this end, we first propose our basic MVS method with
Adaptive Checkerboard sampling and Multi-Hypothesis
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(a) (b) (c) (d) (e)

Figure 2. Texture richness for different scales. (a) Original Image.
(b) The zoomed-in version of the white box in (a). (c) The down-
sampled version of (b). (d) Depth map obtained with the original
scale. (e) Depth map obtained with the multi-scale scheme. The
patch windows in red are kept the same size.

joint view selection (ACMH). Our key idea is based on the
assumption of [18] that pixels within a relatively large re-
gion can be approximately modeled by one 3D plane, which
indicates structured region information and a shared hy-
pothesis among these pixels. Thus, unlike fixed sampling
in diffusion-based conventions which may be misleading,
ACMH searches larger regions to adaptively sample better
candidate hypotheses for propagation (Figure 1(c)). With
these better hypotheses, we propose a multi-hypothesis joint
strategy to infer pixelwise view selection. For a specific
pixel, this strategy employs a voting scheme to supply the
same aggregation view subset for different propagated hy-
potheses, and gives credible views greater weights to aggre-
gate the final multi-view matching cost. As a result, ACMH
can achieve accurate depth map estimation while inheriting
the high efficiency of the checkerboard pattern.

Moreover, as a key component of PatchMatch Stereo
methods, view selection heavily depends on a stable visual
similarity measure between two image patches. However,
measuring the visual similarity in low-textured areas is al-
ways challenging. As depicted in Figure 2(b), the low dis-
crimination in low-textured areas leads to the ambiguity of
visual similarity, which further degrades the performance
of PatchMatch Stereo methods (Figure 2(d)). However, we
observe that, for the low-textured areas, though the texture
information with an universal patch window in Figure 2(b)
is not significant , it becomes more discriminative under the
same patch window when an image is downsampled (Fig-
ure 2(c)). That is, the texture richness is a relative measure.
Then, an intuitive idea is that, we can estimate depth in-
formation at coarser scales to alleviate the ambiguities in
low-textured areas and use it as guidance for the matching
progress at finer scales.

Based on the above idea, we further present a multi-
scale patch matching with geometric consistency guidance,
called ACMM. Specifically, our method constructs im-
age pyramids and obtains reliable depth estimates for low-
textured areas at coarser scales. After propagating these es-
timates from coarser scales to finer scales via upsampling,
we resort to geometric consistency to constrain the depth

optimization at finer scales. Considering that the depth
propagation from coarser scales to finer scales often leads to
depth information loss in details, we present a detail restorer
based on the difference map of photometric consistency be-
tween adjacent scales. Through our proposed strategies, our
approach can not only estimate depth information in low-
textured areas but also preserve details.

Our main contributions are summarized as follows: 1)
Inherited from the high efficiency of the diffusion-like prop-
agation, we present an adaptive checkerboard sampling
scheme to select more reasonable hypotheses for propaga-
tion based on the structured region information. Then, a
multi-hypothesis joint view selection is proposed to help se-
lect credible aggregation views. 2) For the ambiguities in
low-textured areas, we propose a multi-scale patch match-
ing scheme with geometric consistency guidance. The ge-
ometric consistency imposed at different scales can guar-
antee that the reliable depth estimates for low-textured ar-
eas obtained at coarser scales are retained at finer scales.
Moreover, a detail restorer is present to correct errors prop-
agated from the coarser scales. Through extensive evalu-
ation, we demonstrate the effectiveness and efficiency of
our method by achieving state-of-the-art performance on
Strecha dataset [27] and ETH3D benchmark[21].

2. Related Work
According to [22], MVS methods can be categorized

into four groups, voxel-based methods [5, 29, 26], sur-
face evolution based methods [4, 11, 3], patch-based meth-
ods [9, 17, 7] and depth map based methods [36, 8, 19].
The voxel-based methods are often constrained by their pre-
defined voxel grid resolution. The surface evolution based
methods depend on a good initial solution. As for the patch-
based methods, its dependence on matched keypoints im-
pairs the completeness of 3D models. The depth map based
methods require estimating depth maps for all images and
then fusing them into a unified 3D scene representation. A
more detailed overview of MVS methods is presented in
[22, 6]. Our method belongs to the last category and we
only discuss the related PatchMatch Stereo approaches.

In terms of efficiency, [1, 30, 36, 19] adopt the sequen-
tial propagation scheme. They alternatively perform up-
ward/downward propagation in odd iteration steps and per-
form leftward/rightward propagation in even steps. To in-
crease parallelism, [30] selects an eighth of the image height
(width) as the length of each scanline in the vertical (hori-
zontal) propagation. However, the algorithm parallelism of
sequential propagation is still proportional to the number of
rows or columns of images. Then, Galliani et al. [8] propose
to leverage a checkerboard pattern to perform a diffusion-
like propagation scheme. It allows to simultaneously update
the status of half of the pixels in an image. However, they
ignore good hypotheses should have priority in propagation.
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Figure 3. Overview of our approach. The initial depth maps of the coarsest scale are obtained by our basic MVS model with only photo-
metric consistency (Section 4). After upsampling the estimation of the previous scale to the current scale, detail restorer is implemented
to correct the errors in details. At each scale, geometric consistency is enforced to enhance coherence and prevent the reliable estimates in
low-textured areas from the previous scale being impaired by photometric consistency (Section 5).

According to the above propagation strategies, many
view selection schemes are proposed to tackle the noise in
the propagation process. In the diffusion-like propagation
scheme, [8] selects fixed k views with the minimal k match-
ing costs. However, this leads to a bias due to different ag-
gregation subsets for different hypotheses. In the sequential
propagation, [1, 30] also ignore the pixelwise view selec-
tion by only demanding global view angles. To incorpo-
rate only useful neighboring views at each pixel, Zheng et
al. [36] first try to construct a probabilistic graphical model
to jointly estimate depth maps and view selection. Further,
Schönberger et al. [19] introduce geometric priors and tem-
poral smoothness to better depict the state-transition proba-
bility. However, this sequential inference needs to condition
the status of previous pixels at the current state. It is still
more sensitive to noise in low-textured areas.

Although some methods focus on view selection to im-
prove local smoothness and gain some benefits, they are
still restricted by patch window size. To perceive more use-
ful information in low-textured areas, Wei et al. [30] adopt
the multi-scale patch matching with variance based consis-
tency. However, this consistency is too strong to spread
some reliable estimates in few neighboring views across
multiple views. Moreover, they overlook the errors in de-
tails.

3. Overview
Given a set of input images I = {Ii | i = 1· · ·N}

with known calibrated camera parameters P = {Pi | i =
1· · ·N}, our goal is to estimate depth maps D = {Di | i =
1· · ·N} for all images and fuse them into a 3D point cloud.
Specifically, we aim to recover the depth map for reference
image Iref sequentially selected from I with the guidance of
source images Isrc (I − Iref).

An overview of our method is illustrated in Figure 3.
We construct a pyramid with k scales for all images with

a downsampling factor η. We denote the l-th scale of Ii and
corresponding camera parameter as Ili and Pl

i, l = 0· · ·k−1.
The finest scale of the pyramids Ik−1i are the raw images.
We aim to propagate the reliable estimates in low-textured
areas from coarser scales to help with the estimation of finer
scales without much loss in details.

We first use our basic MVS model with photometric con-
sistency, ACMH, to obtain the initial depth maps for all im-
ages at the coarsest scale. To enhance the coherence among
all depth maps, we further perform ACMH with geometric
consistency. Then we upsample the depth maps to the next
scale. The upsampling propagates the reliable depth esti-
mates in low-textured areas to the current scale, which are
obtained at the previous scale. To correct the errors induced
from the previous scale, a detail restorer is first employed.
These corrected depth maps are utilized as initialization to
guide the subsequent ACMH with geometric consistency
such that the reliable estimates within low-textured areas
can be kept and optimized at the current scale. The same
upsampling, detail restorer and ACMH with geometric con-
sistency are repeated until we obtain the depth maps at the
original image scale. We term our whole method ACMM.

4. Structured Region Information
Structured region information means that pixels within a

relatively large region can be approximately be modeled by
the same 3D plane. Our basic MVS method with Adaptive
Checkerboard sampling and Multi-Hypothesis joint view
selection (ACMH) is inspired by this to sample better candi-
date hypotheses for propagation and select views with more
credibility for multi-view matching costs aggregation. The
details of ACMH are given as follows.

4.1. Random Initialization

Following [8], we first randomly generate a hypothesis
(including depth and normal) to build a 3D plane for each



pixel in the reference image Iref. For each hypothesis, a
matching cost is computed from each of N − 1 source im-
ages via a plane-induced homography [10]. Then the top
K best matching costs are aggregated into the initial multi-
view matching cost for the subsequent propagation.

4.2. Adaptive Checkerboard Sampling

We first adopt the idea in [8] to partition the pixels of Iref
into red-black grids of a checkerboard. This pattern allows
us to simultaneously update the hypotheses of black pixels
using red pixels and vice versa. In [8], their method samples
from eight fixed positions. Differently, for each pixel in red
or black group, we expand these eight points into four V-
shaped areas and four long strip areas (Figure 1(c)). Each V-
shaped area contains 7 samples while every long strip area
contains 11 samples. Then we sample eight good hypothe-
ses from these areas according to their previous multi-view
matching costs. This sampling scheme is favored by the
structured region information. It means that a hypothesis
with a smaller multi-view matching cost will represent a lo-
cal plane better. This strategy helps a good plane of a local
shared region to spread further as much as possible and sup-
plies more compact estimates.

4.3. Multi-Hypothesis Joint View Selection

To obtain a robust multi-view matching cost for each
pixel, we further leverage these eight structured hypotheses
to infer the weight of every neighboring views. For pixel p,
we calculate its corresponding matching costs with propa-
gated hypotheses and embed them into a cost matrix

M =


m1,1 m1,2 · · · m1,N−1
m2,1 m2,2 · · · m2,N−1

...
...

. . .
...

m8,1 m8,2 · · · m8,N−1

 , (1)

where mi,j is the matching cost for the i-th hypothesis hi
scored by the j-th view Ij . We adopt the bilateral weighted
adaption of normalized cross correlation [19] to compute
the matching cost, which describes the photometric consis-
tency between the reference and source patch.

To infer aggregation views from the above cost matrix,
we apply a voting decision in each column to determine
whether a view is appropriate. A key observation behind
this is that for a bad view, its corresponding eight matching
costs are always high. In contrast, a good view always has
some smaller matching costs. Furthermore, the matching
costs for the good view will decrease with the iteration of
our algorithm. Therefore, a good matching cost boundary
is defined as

τ(t) = τ0 · e−
t2

α , (2)

where t means the t-th iteration, τ0 is the initial matching
cost threshold and α is a constant. Besides, we define a
fixed bad matching cost threshold τ1 (τ1 > τ(t)). Based on

our above observation, for a specific view Ij , there should
exist more than n1 matching costs meeting the condition:
mi,j < τ(t). We define this set as Sgood(j) to calculate
the weight of view Ij later. Also, there should be less than
n2 matching costs meeting the condition: mi,j > τ1. A
view simultaneously satisfying the above conditions will be
incorporated into the current view selection set St in the t-th
iteration.

The above inferred view selection set St may contain
some unstable views because of noise, viewing point and
scale, etc. This means each selected view will contribute
different weights to the final aggregated matching cost. To
evaluate the importance of each selected view, the confi-
dence of a matching cost is computed as follows,

C(mij) = e
−
m2
ij

2β2 . (3)
where β is a constant. This makes good views more dis-
criminative. The weight of each selected view can be de-
fined as

w(Ij) =
1

|Sgood(j)|
∑

mi,j∈Sgood(j)

C(mi,j), Ij ∈ St. (4)

We suppose the most important view vt−1 in iteration t− 1
shall continue to have influence on the view selection of the
current iteration t. Thus, we modify Formula 4 as

w′(Ij) =

{
(I(Ij = vt−1) + 1) · w(Ij), if Ij ∈ St;
0.2 · I(Ij = vt−1), else.

(5)
where I(·) is an indicator function such that I(true) = 1
and I(false) = 0. This modification can make our view
selection method more robust. With the inferred weights
w′, the multi-view aggregated photometric consistency cost
of pixel p for hypothesis hi is defined as

mphoto(p, hi) =

∑N−1
j=1 w′(Ij) ·mi,j∑N−1

j=1 w′(Ij)
. (6)

The current best estimate for pixel p is updated by the hy-
pothesis with the minimum multi-view aggregated cost.

4.4. Refinement

After each red-black iteration, a refinement step is ap-
plied to enrich the diversity of solution space. There exist
three conditions for the current depth and normal of pixel
p, i.e., either of them, neither of them, or both of them
are close to the optimal solution [19]. Thus, we generate
two new hypotheses, one of which is randomly generated
and the other is obtained by perturbing the current estimate.
We combine these new depths and normals with the current
depth and normal, yielding another six new hypotheses to
be tested. The hypothesis with the least aggregated cost is
chosen as the final estimate for pixel p. The above propa-
gation, view selection and refinement are repeated multiple
times to get the final depth map for Iref. At the end, a me-
dian filter of size 5× 5 is applied to our final depth maps.



5. Multi-Scale Geometric Consistency

Combined with the multi-scale scheme, ACMH at the
coarsest scale obtains more reliable depth estimates in low-
textured areas. However, photometric consistency experi-
ences difficulties when applied to optimize these depth es-
timates at finer scales. In this section, we detail how to
leverage geometric consistency guidance to deal with the
optimization of these estimates. Also, a detail restorer is
present to correct the errors induced from coarser scales.

5.1. Geometric Consistency Guidance

After obtaining the reliable depth estimates for low-
texture areas at the coarsest scale and propagating them to
finer scales via upsampling, we need to optimize these es-
timates at finer scales. Our key idea is that the upsampled
depth maps of source images can geometrically constrain
these estimates from being disturbed by photometric con-
sistency, which means geometric consistency. Inspired by
[34, 19], we use the forward-backward reprojection error to
indicate this consistency.

Given the depth of pixel p in image Ii is known asDi(p),
with the camera parameter Pi = [Mi|pi,4] [10], its corre-
sponding back-projected 3D point Xi(p) is computed as

Xi(p) = M−1i · (Di(p) · p− pi,4). (7)
Then the reprojection error between the reference image Iref
and the source image Ij for i-th hypothesis is calculated as

∆ei,j = min(‖Pref ·Xj(Pj ·Xref(p))− p‖, δ), (8)
where δ is a truncation threshold to robustify the reprojec-
tion error against occlusions. We integrate the above equa-
tion into Formula 6 and get the following multi-view aggre-
gated geometric consistency cost as

mgeo(p, hi) =

∑N−1
j=1 w′(Ij) · (mi,j + λ ·∆ei,j)∑N−1

j=1 w′(Ij)
, (9)

where λ is a factor that balances the weight of the two terms.
Specifically, at the l-th scale (l > 0), we employ the

joint bilateral upsampler [15] to propagate the estimates at
the previous scale to the current scale. The upsampled esti-
mates are utilized as the initial seeds of the current scale to
perform the subsequent propagation, view selection and re-
finement as in ACMH. Differently, here we adopt Formula 9
instead of Formula 6 to update the hypothesis of pixel p. In
fact, this modification limits the solution space of current
hypothesis update, especially for the hypothesis update in
low-textured areas. This guarantees that the reliable esti-
mates in low-textured areas obtained at the coarsest scale
can be propagated to the finest scale. It is worth noting that
the geometric consistency also optimizes the depth estima-
tion of other areas except low-textured areas.

Additionally, we notice that the initial depth maps ob-
tained by ACMH are noisy due to ambiguities and occlu-
sions. However, photometric consistency is hard to reflect

these errors since large depth variations only induce small
cost changes [19]. Thus, we also perform geometric con-
sistency at the coarsest scale to optimize these initial depth
maps. Intuitively, if the neighboring depth maps are esti-
mated more accurately, the depth map of the reference im-
age will be further boosted. Thus, we conduct geometric
consistency guidance twice to refine depth maps at each
scale in our experiments.

5.2. Detail Restorer

The multi-scale geometric consistency guidance on the
one hand helps with the estimation of low-textured areas
but on the other hand often leads to blurred details. At the
coarser scales, the lost image details directly cause the loss
of their depth information. Additionally, the fixed patch
window size makes ACMH hard to achieve a trade-off be-
tween thin structures and low-textured areas because the lo-
cal planar assumption does not hold for details [14, 35, 31].
Furthermore, although upsampling can spread the reliable
estimates in low-textured areas to larger regions, it also
brings some extra errors in details. However, we observe
that these details can be better estimated at the original im-
age scale with only photometric consistency (Figure 4(c)).
Thus, we consider how to leverage photometric consistency
to probe erroneous estimates in details and correct them.

As shown in Figure 4(a), the blurred details often hap-
pen in thin structures or boundaries. We hope to detect
these regions and only enforce photometric consistency in
these specific regions to rectify the erroneous estimates. We
observe that the difference map of photometric consistency
cost between adjacent scales can magnify the errors in de-
tails while suppressing the reflection of reliable estimates
in low-textured areas (Figure 4(e)). Thus, we can leverage
this difference map to probe the errors in details and cor-
rect them in a unified way. Specifically, after we upsample
the estimates (i.e., depth and normal) of the previous scale,
we use them to recompute the photometric consistency cost
Cl

init at the current scale. Then, we execute the basic MVS
model to get new photometric consistency cost Cl

photo. The
estimate for pixel p will be considered as an error if the dif-
ference of photometric consistency cost fulfills

Cl
init(p)− Cl

photo(p) > ξ, (10)
where ξ is a small constant value that increases the robust-
ness to distinguish the erroneous estimates. Meanwhile, the
erroneous estimates will be replaced by the hypotheses re-
flecting the above difference. By combining the detail re-
storer, ACMM can make a better trade-off between low-
textured areas and details as shown in Figure 4(f).

6. Fusion

After getting all depth maps, we adopt a fusion step sim-
ilar to [8, 19] to merge them into a complete point cloud.
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Figure 4. Absolute error maps and photometric consistency cost maps on Fountain-P11 dataset for different methods. (a) shows the absolute
error map of our method without detail restorer. Its depth map is obtained by upscaling the estimation of the penultimate scale. Details are
not preserved. (b) shows the photometric consistency cost map of (a). (c) shows the absolute error map of our basic MVS model. Its details
are better preserved than (a). (d) shows the photometric consistency cost map of (c). (e) shows the difference map of (b) and (d). The cost
difference of the erroneous estimates in details is more discriminative than the cost difference of the reliable estimation in low-textured
areas. (f) shows the absolute error map of ACMM. For absolute error maps, green pixels encode missing ground truth data, red pixels
encode an absolute error larger than 2cm, and pixels with absolute errors between 0 and 2cm are encoded in gray [255, 0].

Specifically, we cast each image as reference image in turn,
convert its depth map to 3D points in world coordinate and
project them to its neighboring views to get corresponding
matches. We define a consistent match satisfying the rela-
tive depth difference ε ≤ 0.01, the angle between normals
θ ≤ 30◦ and the reprojection error ψ ≤ 2 as in [19]. If
there exist n ≥ 2 neighboring views whose correspond-
ing matches satisfy the above constraints, the depth estimate
will be accept. At last, the 3D points and normal estimates
corresponding to these consistent depth estimates are aver-
aged into a unified 3D point.

7. Experiments
We evaluate our method on two MVS datasets, Strecha

dataset [27] and ETH3D benchmark [21], from two per-
spectives, depth map assessment and point cloud evaluation.

7.1. Datasets and Settings

Strecha dataset [27] comprises two scenes with ground
truth depth maps, Fountain and HerzJesu. They have 11
and 8 images respectively with 3072× 2048 resolution. Al-
though Strecha dataset provides relatively easy (i.e., well-
textured) scenes and its online service is not available any-
more, there are many state-of-the-art methods evaluating
their depth maps on it. Thus, we will first utilize Strecha
dataset to assess the quality of depth maps. ETH3D bench-
mark [21] consists of three scenarios corresponding to dif-
ferent tasks for (multi-view) stereo algorithms. It is more
challenging for containing a diverse set of viewpoints and
scene types. Here we only focus on high-resolution multi-
view stereo dataset with images at a resolution of 6048 ×
40321. Additionally, the high-resolution multi-view stereo
dataset contains training datasets and test datasets. The
training datasets provide not only ground truth point clouds
but also ground truth depth maps, while the ground truth of
the test datasets is withheld by the benchmark’s web site.

1In fact, we resize this imagery to no more than 3200 pixels for each
dimension as [19] does.

All of our experiments are conducted on a machine
with two Intel E5-2630 CPUs and two GTX Titan X
GPUs. In the multi-hypothesis joint view selection scheme,
{τ0, τ1, α, β, n1, n2} = {0.8, 1.2, 90, 0.3, 2, 3}. In our ge-
ometric consistency guidance strategy and detail restorer,
{k, η, δ, λ, ξ} = {3, 0.5, 3, 0.2, 0.1}. Note that, we use only
every other row and column in the window to speed up the
computation of matching cost [8].

7.2. Depth Map Evaluation

We evaluate our method’s effectiveness on depth map es-
timation on Strecha dataset and ETH3D benchmark in this
section. Following [12], we calculate the percentage of pix-
els with a absolute depth error less than 2cm and 10cm from
the ground truth in Table 1. To show the effectiveness of
the structured region information, we replace the adaptive
checkerboard sampling and multi-hypothesis joint view se-
lection in ACMH with the diffusion-like propagation and
top-k-winners-take-all view selection, denoted as DWTA.

As can be seen, with the structured region information,
ACMH performs better than DWTA and is also competitive
with COLMAP [19] without geometric consistency. Fur-
thermore, we see that ACMM surpasses ACMH by a note-
worthy margin and almost achieves the best performance
in this dataset. Note that, HerzJesu contains more low-
textured areas and CMPMVS[13] performs a bit better than
ACMM on it in the case of 2cm. This is because CMP-
MVS is a global energy-based method that mainly focuses
on weakly-supported surface. However, on the Fountain
dataset that contains more details, ACMM is much better
than CMPMVS in the case of 2cm. We also note that,
COLMAP is a representative algorithm among local meth-
ods. ACMM outperforms COLMAP in the case of 2cm, al-
though there is no significant difference in the case of 10cm.

To reflect more challenges such as low-textured areas
and thin structures in real-world scenes, we further compare
our reconstructed depth maps with COLMAP2 on the high-

2Note that, the depth maps of COLMAP are obtained with its default
parameters and are unfiltered.



Table 1. Percentage of pixels with absolute errors below 2cm and 10cm on Strecha dataset. The related values are from [12, 36, 19].
[19]\G means COLMAP without geometric consistency.

error [36] [32] [7] [33] [28] [13] [8] [19] [19]\G DWTA ACMH ACMM

Fountain 2cm 0.769 0.754 0.731 0.712 0.732 0.824 0.693 0.827 0.804 0.778 0.793 0.853
10cm 0.929 0.930 0.838 0.832 0.822 0.973 0.838 0.975 0.949 0.921 0.952 0.974

HerzJesu 2cm 0.650 0.649 0.646 0.220 0.658 0.739 0.283 0.691 0.679 0.614 0.656 0.731
10cm 0.844 0.848 0.836 0.501 0.852 0.923 0.455 0.931 0.907 0.804 0.873 0.932

Table 2. Percentage of pixels with absolute errors below 2cm and 10cm on the high-resolution multi-view training datasets of ETH3D
benchmark. The best results are marked in bold while the second-best results are marked in red.

error method indoor outdoor
delive. kicker office pipes relief relief. terrai. courty. electro facade meadow playgr. terrace

2cm

[19] 0.697 0.435 0.263 0.411 0.863 0.858 0.576 0.826 0.710 0.742 0.546 0.709 0.808
DWTA 0.705 0.369 0.293 0.419 0.887 0.883 0.675 0.772 0.730 0.684 0.464 0.731 0.801
ACMH 0.733 0.427 0.323 0.536 0.891 0.903 0.714 0.799 0.748 0.685 0.571 0.753 0.820
ACMM 0.777 0.667 0.512 0.765 0.960 0.957 0.854 0.844 0.868 0.745 0.771 0.843 0.897

10cm

[19] 0.806 0.514 0.342 0.478 0.896 0.893 0.635 0.934 0.774 0.909 0.701 0.810 0.891
DWTA 0.815 0.451 0.382 0.496 0.918 0.918 0.738 0.910 0.810 0.899 0.647 0.844 0.894
ACMH 0.842 0.519 0.418 0.617 0.923 0.941 0.778 0.937 0.834 0.908 0.786 0.869 0.915
ACMM 0.930 0.800 0.648 0.839 0.982 0.984 0.904 0.973 0.947 0.934 0.917 0.951 0.980

(a) Reference image (b) Ground truth (c) COLMAP (d) DWTA (e) ACMH (f) ACMM

Figure 5. Qualitative depth map comparisons between different algorithms on some high-resolution multi-view training datasets (courty.,
electro, pipes) of ETH3D benchmark. Black pixels in (b) have no ground truth data. Some challenging areas are shown in white boxes.

resolution multi-view training datasets of ETH3D bench-
mark in Table 2. We see that ACMM clearly outperforms
COLMAP in these challenging datasets, especially in some
indoor datasets including poorly textured regions, such as
kicker, office and pipes. Moreover, ACMH almost achieves
the second-best performance. Figure 5 illustrates some ex-
amples of the depth maps estimated by COLMAP, DWTA,
ACMH and ACMM. As can be seen, ACMH also performs
better than DWTA and itself yields more robust results than
COLMAP and DWTA in low-textured areas as it lever-
ages the structured region information. Note that, although
COLMAP outperforms DWTA and ACMH in some well-
textured datasets such as court. and facade, it performs
worse than DWTA and ACMH in some challenging datasets
such as electro and office. This is because COLMAP cannot
gain robust belief in challenging regions to infer pixelwise
view selection. Combined with the multi-scale scheme,
ACMM can further boost the estimation in these regions.

Moreover, the details are also kept.

7.3. Point Cloud Evaluation

In this section, fusion is imposed to get more consistent
point clouds. We evaluate our point clouds on the high-
resolution multi-view test datasets of ETH3D benchmark.

Table 3 lists the accuracy, completeness and F1 score
of the point clouds estimated by PMVS [7], Gipuma [8],
LTVRE [16], COLMAP, ACMH and ACMM. All these
methods show similar results in accuracy. In terms of F1

score, ACMH is competitive with other methods for its
good depth map estimation. And, ACMM outperforms
other methods as it inherits the structured region property
of ACMH and combines with the multi-scale scheme. Fur-
thermore, ACMM obtains much higher completeness than
other methods on indoor datasets that contain more low-
textured areas. This is because ACMM perceives more
credible information in these areas. As for outdoor datasets,



(a) Images (b) PMVS (c) Gipuma (d) COLMAP (e) LTVRE (f) ACMH (g) ACMM

Figure 6. Qualitative point cloud comparisons between different algorithms on some high-resolution multi-view test datasets (living., old
co.) of ETH3D benchmark. These dense 3D models are reported by the ETH3D benchmark evaluation server [20].

Table 3. Point cloud evaluation on the high-resolution multi-view
test datasets of ETH3D benchmark showing accuracy / complete-
ness / F1 score (in %) at different evaluation thresholds (including
2cm and 10cm). The related values are from [20].

method 2cm 10cm

indoor

PMVS 90.66 / 28.16 / 40.28 96.97 / 42.50 / 55.40
Gipuma 86.33 / 31.44 / 41.86 98.31 / 52.22 / 65.41
LTVRE 93.44 / 63.54 / 74.54 99.34 / 82.72 / 89.92

COLMAP 91.95 / 59.65 / 70.41 98.11 / 82.82 / 89.28
ACMH 91.14 / 64.81 / 73.93 98.76 / 82.61 / 89.42
ACMM 90.99 / 72.73 / 79.84 97.79 / 88.22 / 92.50

outdoor

PMVS 88.34 / 42.89 / 55.82 95.95 / 55.17 / 68.12
Gipuma 78.78 / 45.30 / 55.16 97.36 / 62.40 / 75.18
LTVRE 91.82 / 74.45 / 81.41 98.72 / 90.18 / 94.19

COLMAP 92.04 / 72.98 / 80.81 98.64 / 89.70 / 93.79
ACMH 83.96 / 80.03 / 81.77 97.51 / 90.57 / 93.87
ACMM 89.63 / 79.17 / 83.58 98.85 / 90.43 / 94.35

all

PMVS 90.08 / 31.84 / 44.16 96.71 / 45.67 / 58.58
Gipuma 84.44 / 34.91 / 45.18 98.07 / 54.77 / 67.86
LTVRE 93.04 / 66.27 / 76.25 99.18 / 84.59 / 90.99

COLMAP 91.97 / 62.98 / 73.01 98.25 / 84.54 / 90.40
ACMH 89.34 / 68.62 / 75.89 98.44 / 84.60 / 90.53
ACMM 90.65 / 74.34 / 80.78 98.05 / 88.77 / 92.96

ACMM achieves almost the same completeness as ACMH
does. Figure 6 illustrates some qualitative results achieved
by these methods. It can be observed that, ACMM produces
more complete point clouds especially in the challenging ar-
eas, e.g., red boxes shown in Figure 6.

7.4. Runtime Performance

We list the runtime of depth map generation for differ-
ent methods that belong to the scope of PatchMatch Stereo
in Table 4. All these methods are conducted on a single
GPU through our same platform3. ACMH and Gipuma both
converge after 6 iterations while COLMAP adopts 10 itera-
tions. For ACMM, it needs 7 iterations at the coarsest scale
and 6 iterations at other scales. As Table 4 shows, ACMH
is around 6× faster than COLMAP. This is because the se-
quential propagation of COLMAP only updates the status
of one row (column) of pixels at a time and its each iter-

3Note that, all these methods use only every other row and column in
the window to compute the matching cost.

Table 4. Runtime (in second) of depth map generation for different
methods on Strecha dataset.

dataset #images Gipuma COLMAP ACMH ACMM
Fountain 11 235.58 1046.88 173.55 321.66
HerzJesu 8 134.34 709.14 88.85 141.26

ation needs propagations in 4 directions. Though ACMH
and Gipuma both leverage the checkerboard propagation,
ACMH is also faster than Gipuma. This is mainly because
Gipuma employs a bisection refinement, which produces
more unnecessary hypotheses to test. As for ACMM, it
spends extra computational time on multi-scale geometric
consistency scheme. However, ACMM takes no more than
twice the runtime spent by ACMH as its geometric con-
sistency at the coarser scales is conducted on downsampled
images. Therefore, it is still about 3× faster than COLMAP.

8. Conclusion

In this work, we propose a novel multi-view stereo
method for effective and efficient depth map estimation.
Based on structured region information, we first present
our basic MVS method with Adaptive Checkerboard sam-
pling and Multi-Hypothesis joint view selection (ACMH).
These strategies help to propagate good hypotheses as soon
as possible and infer pixelwise view selection. Focusing on
the depth estimation in low-textured areas, we further com-
bine ACMH with our proposed multi-scale geometric con-
sistency guidance scheme (ACMM). The multi-scale geo-
metric consistency together with a detail restorer helps ob-
tain more discrimination over low-textured areas while re-
taining fine details. In experiments, we demonstrate that
our methods can obtain smooth and consistent depth map
estimation together with complete dense 3D models while
keeping a good efficiency, which shows promising applica-
tions of our methods.
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