
Out-of-Core Surface Reconstruction via Global TGV Minimization

Nikolai Poliarnyi
Agisoft LLC, St. Petersburg, Russia

polarnick@agisoft.com

Abstract

We present an out-of-core variational approach for sur-
face reconstruction from a set of aligned depth maps. Input
depth maps are supposed to be reconstructed from regular
photos or/and can be a representation of terrestrial LIDAR
point clouds. Our approach is based on surface reconstruc-
tion via total generalized variation minimization (TGV)
because of its strong visibility-based noise-filtering prop-
erties and GPU-friendliness. Our main contribution is an
out-of-core OpenCL-accelerated adaptation of this numeri-
cal algorithm which can handle arbitrarily large real-world
scenes with scale diversity.

1. Introduction
The structure from motion pipeline makes it possible

to take photos of the same object/scene and then not only
align and calibrate these photos, but also reconstruct an
observed surface with a high amount of details. At the
moment, the progress in camera sensor development opens
a possibility for a regular user to take photos with a size
up to hundreds of megapixels, the number which has been
increasing rapidly over the past decades. Additionally, due
to help of UAVs, affordable quadrocopters and automatic
flight planners, it becomes possible to gradually increase
the amount of pictures one can take in a short span of time.
Therefore, in the area of photogrammetry, the task of being
able to use all of the available data for a detailed noise-free
surface reconstruction in an out-of-core fashion is necessary
to make a highly detailed large scale reconstruction possible
on affordable computers with limited RAM.

We present a surface reconstruction method that has
strong noise-filtering properties and can take both depth
maps and terrestrial LIDAR scans as an input. The whole
method is implemented in an out-of-core way: the required
memory usage is low even for very large datasets - we tar-
geted the usage to be around 16 GB even for a Copenhagen
city dataset with 27472 photos - see Fig. 1. Each process-
ing stage is divided into independent parts for out-of-core
guarantees, thus additionally obtaining a massive parallelism

Figure 1. Our method can handle an arbitrary large scene – even
425 km2 of the Copenhagen city (this polygonal model was recon-
structed from 27472 aerial photos – see supplementary for details).

property (i.e. pipeline is cluster-friendly). Calculation-heavy
stages (the computation of histograms and iterative numeric
scheme) are accelerated with GPUs via OpenCL API.

2. Related Work
Poisson surface reconstruction method [18] performs

well in local geometry details preservation by respecting
normals of input point clouds, however it normally fails to
handle scale diversity and often fails to filter noise between
the surface and the sensor origins. It should be noted that
handling of scale diversity can be added, and noise filtering
can be implemented on an early stage as a depth map fil-

tering [22]. Nevertheless, while Poisson reconstruction can
be implemented in an out-of-core fashion [2] - the preced-
ing depth map filtering approach will likely require a high
amount of memory to keep all depth maps relevant for a
current depth map filtering in RAM.

Graph cut-based reconstruction methods [15], [17], [14],
[33] explicitly take into account visibility rays from sensors’
origins to samples in depth maps, and therefore such meth-
ods have great noise filtering properties. Scale diversity is
also naturally supported via Delaunay tetrahedralized space
discretization. However, Delaunay tetrahedralization and
minimum graph cut estimation of an irregular graph [3], [12]
have high memory consumption and are computationally
heavy. Because of this, the out-of-core SSR [24] method
happens to be more than one order of magnitude slower than
our method.

Local fusion methods [5], [20], [19] including FSSR [9],
[10] are well suited for parallelization and scalability [20].
However on the other hand due to their local nature, they
have weak hole filling properties and can not filter strong
depth map noise in difficult cases like the basin of the foun-
tain in the Citywall dataset as shown in [27].

Photoconsistent mesh refinement-based methods [29],
[21] are fast due to GPU acceleration but are not able to
change the topology of an input mesh, and thus they heavily
depend on the quality of an initial model reconstruction.

Total variation minimization-based methods [32], [13],
[25] are shown to have great noise filtering properties due
to visibility constraints, and can easily be GPU-accelerated
[31]. Additionally, as shown in [27], [28], a variation mini-
mization scheme can be implemented in a compact and scale
diversity-aware way by the use of a balanced octree, but
even with such compact space representation, the peak mem-
ory consumption becomes critical for a large scale scene
reconstruction task.

Our TGV -functional formulation follows [25], it was
adapted for 3D space in a way, discussed in [32]. We use
a 2:1 balanced octree similar to [27] for 3D space represen-
tation. In contrast with their method, our framework has
strict peak memory guarantees and is much faster thanks
to GPU acceleration in the most time-consuming stages (as
shown in [27] – its bottlenecks were in the computation of
the histograms (17%) and the energy minimization (80%)
stages, so we implemented both of them on GPU).

3. Algorithm Overview

To begin with, we would like to discuss the chosen func-
tional minimization with a focus on noise robustness, scale
diversity awareness and GPU-friendliness, while not taking
memory requirements into account. Later, we will show how
to adapt this minimization scheme for an out-of-core fashion
in Section 4.

Figure 2. Generalization of a range
field like in [32]. fi equal to +1 on
each ray between the camera and a
depth map sample and then fades
away to −1 right under the surface
sample.

Figure 3. An example of
a terrestrial LIDAR scan
from the Tomb of Tu Duc
dataset (RGB colors and
depth from the sensor).

3.1. Distance Fields as Input Data

We prefer to be able to support different kinds of range
image data as an input, such as:

• Depth maps built with stereo methods like SGM [16]
from regular terrestrial photos or aerial UAV photos;

• RGB-D cameras, which are essentially the same as
previously mentioned depth maps;

• Terrestrial LIDAR point clouds with a known sensor
origin.

It means that we need to generalize over all these types
of data and work with an abstraction of a range image that
can be used in the functional formulation. All this data can
naturally be formulated in a way, described in [32], as a
distance field fi, which is equal to +1 on each ray between
the camera and a depth map sample and then fades away to
−1 right under the surface sample – see Fig. 2. The only
difference for our case is that we want to work with scenes
with diverse scales, so δ (the width of a relevant near-surface
region) and η (the width of an occluded region behind the
surface) should be adaptive to the radius rx of a material
point x. Thus, in all our experiments we use δx = 6 · rx
and ηx = 3 · δx = 18 · rx (smaller values lead to holes in
thin surfaces, larger values lead to ’bubbliness’ - excessive
thickness of thin surfaces).

Both depth maps from stereo photos and RGB-D cameras
can be represented in such way naturally. The only non-
trivial question is how to estimate material point radii rx for
each pixel in a depth map. For each depth map’s pixel, we
are estimating the distance in 3D space to the neighboring
pixels and take half of that distance as the sample point’s
radius rx.

To represent terrestrial LIDAR point clouds as range im-
ages, we rely on the fact that the structure of such point
clouds is very similar to the structure of pictures, taken with
360-degree cameras (see Fig. 3). Because of that, we treat
them just like depth maps of 360-degree cameras with the
only difference that LIDAR data is nearly noise-free, and

thus we can rely on such data with more confidence (i.e.
with a weaker regularization term) – see Section 3.4 below.

3.2. Functional Formulation

In our task, given multiple distance fields fi, we want
to find such an indicator field u (where u = 0 corresponds
to a reconstructed isosurface, u = +1 – to the exterior of
the object, and u = −1 – to the interior of the object) that
will closely represent these distance fields in some way. One
of the ways to formulate what would be a good field u is
to introduce some energy functional. The less energy the
functional produces – the better the indicator field is.

Total variation (TV) regularization force term for u with
an L1 data fidelity term between u and fi is one such energy
functional named TVL1 [32] and is defined as:

min
u

{∫
Ω

(
|∇u|+ λ

∑
i

|u− fi|
)
dx

}
. (1)

Note that while the TV term prevents the surface from
having discontinuities, there is no term that would force a
regularity of surface normals to tend the reconstruction to
piecewise polynomial functions of an arbitrary order (see
details in [25]). Such term was introduced as a part of the
TGV energy functional via an additional vector field v in
[4] and it was adapted to 2.5D reconstruction in [25]:

min
u,v

{∫
Ω

(
α1|∇u− v|+ α0|E(v)|+

∑
i

|u− fi|
)
dx

}
,

(2)

where E(v) denotes the symmetric gradient operator

E(v) = ∇v +∇v
T

2
. (3)

In order to minimize this TGV functional, we use the
primal-dual method [25]. Also, like in [32], we have imple-
mented primal-dual iterations over a coarse-to-fine scheme
with the execution of iterations accelerated on GPU for a
faster convergence. We have found that 200 iterations are
enough for convergence on each level of the scheme.

3.3. Space Discretization

To minimize TGV w.r.t. u, we need to choose a space
discretization. A regular grid [32] does not correspond to
scale diversity and will potentially lead to high memory
consumption. In our approach, we use an adaptive octree.
Let rroot be the radius of the root cube of the octree. For
each point sample x with the center in px and the radius rx,
an octree should have a cube c containing px. This cube

should be on such an octree depth dc that the following
inequality holds:

0.75 · rx ≤
rroot
2dc

< 1.5 · rx. (4)

In the implemention of the primal-dual method of min-
imization, we need pointers from each octree cube to its
neighboring cubes in order to access neighbors’ u, v values
and dual variables p, q. In an adaptive octree, any cube can
have any number of neighbors due to adaptive subdivision
and scene scale diversity. However, we aim to execute the
iterative scheme on GPU, meaning that in order to achieve
good performance we need to limit the number of neighbor-
ing voxels in some way, resulting in a limited number of
references needed to store per each voxel. We utilize the
approach, discussed in[27], which results in 2:1 balancing
of the adaptive octree, leading to the point when each cube
has only 4 or less neighbors over each face.

As will be discussed later in Section 3.4, it is important to
know what average radius of point samples Sc corresponds
to each octree cube c creation. Therefore, for each octree
cube we also store its density, which we also call the cube’s
radius rc, defined as

rc =

∑
x∈Sc

rx

|Sc|
. (5)

3.4. Distance Fields to Histograms

We transform all distance fields into histograms in our
octree like in [32]. This allows us to run iterations with com-
pact histograms [31] (thanks to fixed size per voxel) instead
of large (due to high overlap) depthmaps [32] in memory.
The main difference is that we want the algorithm to be
aware of scale diversity and to implement the minimization
framework in the coarse-to-fine scheme. Because of this, it
is impossible to ignore how big or small a voxel projection is
in a depth map: if a projected voxel is large (for example, on
the coarser levels) and is covered with many depth map pix-
els (i.e. intersected with many distance field rays), we need
to account for all of them. This problem is very similar to the
texture aliasing problem in computer graphics, which can be
solved with texture mipmaps [30]. Similarly, we have used
depth map pyramids by building mipmaps for each depth
map. Therefore, when we project a voxel to the depth map,
we choose an appropriate depth map level of details, and
only then we estimate a histogram bin of a current voxel to
which the current depth map will contribute, see the listing
in Algorithm 1.

Note that such voxel projection into the pyramid of a
depth map is very unstable and changes heavily with any
change of the size of a working region bounding box, which
happens because the natural voxel’s radius in the octree is

Ours GDMR

Ours

GDMR

Figure 4. Results on the Citywall dataset and comparison with GDMR [27] results. The results are comparable. Note that due to strong
visibility-based noise-filtering properties our method led to the cleaner basin of the fountain.

equal to rroot
2d , where d is the voxel’s depth and rroot is the

radius of the octree’s root voxel which depends on the size
of a whole working region. To be invariant to the selection
of the working region size, for each cube, in addition to
its center, we store its density value, which is equal to the
average radius rc of point samples that it represents, see
Eq. 5.

These details lead to local and stable progressive isosur-
face refinement from coarse to fine levels - see Fig. 5.

4. Out-of-Core Adaptation
Our main contribution is an out-of-core adaptation of

the TGV minimization scheme on a 2:1 balanced octree.
Consequently, we implement each stage of the algorithm in
an out-of-core way, where the stages are:

4.1 Build a linear octree from all cubes discussed above in
Space discretization (Section 3.3)

4.2 Balance the octree, so that each cube has a limited
number of neighbors

4.3 Build an indexed treetop to run primal-dual iterations
independently on each treetop leaf’s part

4.4 Save distance fields’ votes to voxels’ histogram bins
over the balanced octree (GPU-accelerated)

4.5 Coarse-to-fine functional minimization over each part
of the balanced octree (GPU-accelerated)

4.6 Surface extraction via the marching cubes algorithm

Figure 5. Citywall dataset. Isosurface progression from coarse to
fine levels: 11, 13, 15, 17. Due to cube radius robustness described
in Section 3.4, we see local progressive isosurface changes from
level to level. Also, note the progressive refinement of topology,
which can not be achieved in photoconsistent refinement methods
[29], [21] because they refine polygonal surfaces directly (with
a 1-to-4 triangle subdivision and vertex movement). Instead, we
refine the indicator field, so the topology of our implicit isosurface
corresponding to zero indicator value changes together with the
indicator field.

4.1. From Distance Fields to Octree

For each distance field, we estimate each sample’s radius
rx as half of the distance to its neighbors in this distance field.
Then for each sample, we spawn an octree cube containing
this sample at an appropriate to rx depth d, as formulated in

Algorithm 1 Pseudocode of the estimation of distance field contribution to voxel histograms.
procedure ADD TO VOXEL HISTOGRAMS(depthmap pyramid,voxel)

mipmap level,pixel← depthmap pyramid.project(voxel.center,voxel.radius)
depthmap← depthmap pyramid.get(mipmap level)
depth← depthmap.get(pixel)
if depth = None then

return . If the distance field doesn’t have ray in such direction – it doesn’t contribute to such voxel anything.
end if
rx ← voxel.radius . See Section 3.1 and Fig. 2:
δx ← 6 · rx . δx – width of the relevant near-surface
ηx ← 3 · δx . ηx – width of the occluded region.
distance← depthmap pyramid.distance to(voxel.center)
a← depth - distance . a equals to zero if the voxel is exactly at the observed surface level.
if a < −ηx then . If the voxel is further then occluded region behind the surface observed with ray then we do not

return . observe such voxel from current depth map, i.e. it does not contribute to the voxel’s histograms.
end if
depthmap vote← 1 . Or depthmap vote← 5 in case of noise-free terrestrial LIDAR input.
a← max(−1.0,min(1.0, a/δx)) . Clamp to the indicator range.
bin← floor(((a+ 1.0)/2.0) · 8.0) . We are using 8 bins following [31].
voxel.histograms[bin]← voxel.histograms[bin]+ depthmap vote

end procedure

Eq. 4. All cubes are encoded with 96-bit 3D Morton codes
[23] and are saved to a single file per each distance field.

Afterwards, we need to merge all these files containing
cubes (i.e. Morton codes). We encoded our cubes with
Morton codes, which introduce a Z-curve order over them –
see a Z-curve example on a balanced 2D quadtree on Fig. 7.
Thus, cubes merging into a single linear octree can be done
with an out-of-core k-way merge sort.

4.2. Octree Balancing

To limit the number of neighbors for each cube, we need
to balance the obtained octree. A linear octree can be arbitrar-
ily large because it describes the whole scene. Out-of-core
octree balancing is described in [26]. Balancing also relies
on the Morton code ordering – we only need to load a part
of the sorted linear octree, balance that part independently
from others, and save the balanced part to a separate file.
Later, we only need to merge all balanced parts, which can
be accomplished like in the previous stage of linear octree
merging – via an out-of-core k-way merge sort.

4.3. Octree Treetop

At this moment, we need to have some high-level scene
representation to be able to compute the histograms and
run iterations for TGV minimization over the balanced oc-
tree part by part. In fact, such subdivision into parts will
make it possible for each of the next stages, including the
final polygonal surface extraction, to be split into OpenCL’s
workItem-like independent parts (i.e. with massive paral-
lelism, which is useful for cluster-acceleration).

<

N <

N

}
<

N

}
<

N
Figure 6. Blue nodes are the
treetop leaves with less than
NcubesPerTreetopLeaf cubes
under each subtree.

Figure 7. Note that the Z-
curve enters and leaves cubes
(green circles) from each tree-
top leaf (blue boxes) exactly
once.

Let us calculate how many descendants each intermediate
cube of the octree has on deeper octree levels. Consider a
treetop – a rooted subtree that contains the minimum num-
ber of octree cubes in the leaves, with the restriction that
each leaf cube contains less than NcubesPerTreetopLeaf de-
scendants in the original tree, see Fig. 6. In all experiments
we used NcubesPerTreetopLeaf = 224 because it is small
enough to guarantee that each subsequent step will fit in
16 GB of RAM, but at the same time limits the number of
leaves in a treetop to just a couple of thousands even on the
largest datasets.

Due to out-of-core constraints, we can not estimate a
global treetop by loading the whole octree into the mem-
ory. Therefore, we build independent treetops for all linear
balanced octree parts, and then merge those treetops into a

Figure 8. Tomb of Tu Duc LIDAR dataset. To the right – two
closeups with colored LIDAR point clouds and resulting models.

global one. At this stage, we can easily save indices of all
covered relevant cubes for each treetop leaf. Moreover, these
indices are consecutive due to Z-curve ordering of Morton
codes – see Fig. 7. Hence, we only need to save two indices
with each treetop leaf –indices of the first and the last rele-
vant cubes from the linear balanced octree. This gives us an
ability to load cubes relevant for current treetop leaf from
balanced octree in IO-friendly consecutive way. In addition,
we have strong guarantees that the number of such cubes is
limited by NcubesPerTreetopLeaf .

4.4. Computation of the histograms

Now we have the scene representation, provided by the
balanced linear octree and its indexed treetop. As the next
part of our method, we need to add votes of all distance fields
to all relevant cubes in the octree.

Let us process all treetop leafs one by one and estimate rel-
evant distance fields for each leaf, which is achieved simply
by checking each distance field frustum for an intersection
with the treetop leaf cube volume. Then, we can just load all
relevant distance fields for each treatop leaf one by one and
add their votes to all descendants of the current treetop leaf,
like shown in the listing in Algorithm 1.

Note that at any moment during the computation
of the histograms the memory contains no more than
NcubesPerTreetopLeaf octree cubes and only a single dis-
tance field.

4.5. Functional Minimization

Now we need to iteratively minimize the TGV functional
from Eq. 2. As shown in [32], it is highly beneficial to use
a coarse-to-fine scheme (especially in regions with lack of
data) for convergence speed. As we will see in this sub-
section – the scheme also helps to not introduce any seams
between processed parts.

Suppose that we have already minimized the functional
over the whole octree up to depth level. Now we want to
execute primal-dual iterations at the depth level + 1 in an

Figure 9. To avoid having visible seams we update the indicator for
all cubes inside the current leaf’s border (set A) while the indicator
for neighboring cubes outside of the border (set B) is frozen.

out-of-core way while not producing any seams between the
parts. Like in the previous stage during the computation of
the histograms, we process treetop leaves one by one. Let
us load a treetop leaf’s cubes in a set A and their neighbors
in a set B. Now, we can iterate a numeric scheme like in
[25] over the cubes from A with the only difference on the
treetop leaf’s border – we want our neighbors’ indicator
values u in cubes from B to be equal to indicator values of
their parenting cubes, which were estimated on the previous
level thanks to the coarse-to-fine scheme. I.e. we update the
indicator for all cubes inside the current leaf’s border (set
A) while the indicator for neighboring cubes outside of the
border (set B) is frozen - see two examples in Fig. 9.

By following this routine, at any given time we process
only the cubes from a treetop leaf and their neighbors, and
thus our memory consumption is bounded by their number.
We do not face any misalignments on the surface next to
treetop leaf borders due to explicit border constraints and
the fact that the surface from one level to the next does not
move far, but just progressively becomes more detailed, see
Fig. 5 and details of the computation of the histograms in
Section 3.4.

We notice that not so many cubes appear on the coars-
est levels, meaning that each separate treetop leaf normally
contains very few cubes. Therefore, we find it beneficial for
performance to process multiple treetop leaves at once on
the coarsest levels (w.r.t. leaves’ total number of cubes on
the current level).

4.6. Marching Cubes

As the last part, after estimating the indicator value u
for all cubes of the octree, we need to extract a polygonal
iso-surface corresponding to an indicator value u = 0. For
that purpose, we can perform the marching cubes algorithm
on per-leaf basis, using the same out-of-core tree partition
as used before.

Marching cubes in a part of balanced octree is trivial:
for each octree cube, we extract 3D-points between indi-
cator values of different sign (i.e. points from iso-surface
corresponding to zero indicator value), and then build their
triangulation via dynamic programming by minimizing the
total surface area, similar to [1].

Figure 10. Palacio Tschudi dataset and a closeup of an entrance.

Table 1. Breakdown of Breisach dataset processing: 2111 photos,
2642 million cubes from input depth maps, 4 hours 20 minutes of
processing on a computer with an 8-core CPU and a GeForce GTX
1080 GPU with the peak RAM usage 10.07 GB.

Processing stage Time Time in %
Linear octree + merge 30 + 11 min 11% + 4%
Balance octree + merge 7 + 11 min 3% + 4%
Index treetop 8 min 3%
Histograms (GPU) 49 min 19%
Primal-dual method (GPU) 88 min 34%
Marching cubes 59 min 22%

Note that neighboring surface parts have seamlessly
matching borders, because both parts have the same indica-
tor value u across the border due to stability of progressive
refinement discussed in the previous subsection.

Finally, it is important to note that the number of triangle
faces will be extra-large for any large dataset. We follow
each octree part marching cubes with QSlim-based [11] dec-
imation, which we modified with a strict border constraint,
namely that no border edge (i.e. a triangle edge lying on a
treetop leaf’s cube face) should be ever collapsed. This way
we achieve strict guarantees of a seamless surface between
neighboring treetop leaves.

5. Results
We evaluated our method on an affordable computer with

an 8-core CPU and a GeForce GTX 1080 GPU on five large
datasets: Citywall1 [10] and Breisach2 [27] – two datasets
from previous papers with high scale diversity, Copenhagen3

[8] – large-scale aerial photos of the city (this dataset was ad-
ditionally evaluated on a small cluster too), Palacio Tschudi4

[7] and Tomb of Tu Duc5 [6] (42 noise-free terrestrial LI-
DAR scans) – two large public datasets collected by CyArk
and distributed by Open Heritage 3D.

The summary for these datasets presented in Table 2.
For photo-based datasets, we executed the structure from

motion pipeline to estimate depth maps with SGM [16]

1https://www.gcc.tu-darmstadt.de/home/proj/mve/
2https://lmb.informatik.uni-freiburg.de/people/

ummenhof/multiscalefusion/
3https://download.kortforsyningen.dk/content/

skraafoto
4https://doi.org/10.26301/4h29-7e80
5https://doi.org/10.26301/n06n-qa49

method and evaluated our algorithm by using these depth
maps as input. Note that to speed up the estimation of
depthmaps, we downscaled original photos for some datasets
– see Table 2. For the Tomb of Tu Duc LIDAR dataset, we
converted each input scan into a 360-camera’s depth map
and used histogram votes with an increased weight – see
the listing in Algorithm 1. Processing breakdowns for other
datasets including the Copenhagen city dataset (evaluated
twice – on an affordable computer and on a small cluster)
with reconstruction results for many different city scenes are
provided in the supplementary.

We ensured that the results are detailed and clean (see
Fig. 4, 8, 10, 11) for all datasets, and that our method’s peak
memory usage was between 10 GB and 17 GB. Comparison
with previous work [27], [24], presented in Table 3, shows
that our method has significantly lower peak memory usage
and is notably faster. To ensure that this speedup was not at
a cost of quality, we compared our results with [27] in Fig. 4
and Fig. 11 (referred results were obtained with the software
that their authors had used 6, we used the same depthmaps
for quality comparison).

6. Conclusions

In this work, we present an out-of-core method for surface
reconstruction from depth maps and terrestrial LIDAR scans.
Our results have shown that the algorithm specifics do not in-
crease the running time; instead, thanks to GPU-acceleration
our implementation has proven to be much faster than pre-
viously published results on the datasets that we have used
for testing. We have also shown that the quality of results
is comparable to an in-core reconstruction method GDMR
[27]. Note that an out-of-core balanced octree with treetop
indexing is a rather general concept that can be used as a
framework for different methods in a similar way as we used
it with the TGV minimization method.

One of the main contributions of our work is an out-of-
core framework for fast and detailed surface reconstruction.
Our method is available as part of commercial software.

6We used pointfusion 0.2.0, publicly available at http:
//lmb.informatik.uni-freiburg.de/people/ummenhof/
multiscalefusion

https://www.gcc.tu-darmstadt.de/home/proj/mve/
https://lmb.informatik.uni-freiburg.de/people/ummenhof/multiscalefusion/
https://lmb.informatik.uni-freiburg.de/people/ummenhof/multiscalefusion/
https://download.kortforsyningen.dk/content/skraafoto
https://download.kortforsyningen.dk/content/skraafoto
https://doi.org/10.26301/4h29-7e80
https://doi.org/10.26301/n06n-qa49
http://lmb.informatik.uni-freiburg.de/people/ummenhof/multiscalefusion
http://lmb.informatik.uni-freiburg.de/people/ummenhof/multiscalefusion
http://lmb.informatik.uni-freiburg.de/people/ummenhof/multiscalefusion

Ours

GDMR

Ours

GDMR

Figure 11. Results on the Breisach dataset and comparison with GDMR [27] results. The results have comparable quality. Note that thanks
to strong visibility-based noise-filtering properties our method led to a cleaner space under the bull’s nose.

Table 2. List of presented datasets. For depthmaps estimation speedup, we downscaled original photos for some datasets before running
SGM-based [16] depthmap reconstruction. For example, original 2111 photos in Breisach dataset had the resolution of 5184x3456, and
we downscaled them with x2 factor, down to 2592x1728 pixels. Note that the ’Initial cubes’ column can be interpreted as ’the number of
non-empty depth pixels in depthmaps’, because each initial cube (before merging and octree balancing) corresponds to one sample from a
depthmap.

Dataset
name

Images resolution
after downscale

(and downscale factor)

Input
data

Initial
cubes

Merged and
balanced

cubes

Faces after
marching cubes

Decimated
faces

Peak
RAM
(GB)

Processing
time

Citywall
[10]

2000x1500
(x1)

564
depth maps 1205 mil 404 mil 135 mil 15 mil 13.17 63 min

Breisach
[27]

2592x1728
(x2)

2111
depth maps 2642 mil 1457 mil 558 mil 57 mil 10.07 260 min

Tomb of
Tu Duc

(LIDAR)
[6]

8000x4000
(x1)

42
LIDAR
scans 661 mil 1304 mil 672 mil 48 mil 10.05 160 min

Palacio
Tschudi

[7]

1840x1228 (37%)
1500x1000 (63%)

(x4)
13703

depth maps 16 billion 6 billion 3159 mil 243 mil 16.75 1213 min
Copenha-
gen city

[8]

3368x2168 (26%)
2575x1925 (74%)

(x4)
27472

depth maps 28 billion 24 billion 7490 mil 267 mil 13.35 1758 min

Table 3. Comparison with the previous results - GDMR [27] and SSR 128K [24]. Note that SSR had 8.9 GB per-thread peak memory, and
finished the reconstruction in 58.3 hours using 32 threads, so total peak memory could be estimated as about 32*8.9=285 GB. Also note that
GDMR results for Breisach dataset were taken from the original paper, but because the authors did not mention memory and time results for
the Citywall dataset – we provide our results of GDMR evaluation on a computer with an 8-core CPU starting from 1205 million input
points.

Dataset
name

Input
data

GDMR
Peak RAM

GDMR
time

Our
Peak RAM

Our
time

SSR
Peak RAM

SSR
time

Citywall
564

depth maps 75 GB 19 h 13.17 GB 63 min 32*8.9 GB 58 h

Breisach
2111

depth maps 64 GB 76 h 10.07 GB 260 min N/A N/A

References
[1] Jules Bloomenthal. Polygonization of implicit surfaces.

Citeseer, 1988. 6

[2] Matthew Bolitho, Michael Kazhdan, Randal Burns, and
Hugues Hoppe. Multilevel streaming for out-of-core
surface reconstruction. pages 69–78, 2007. 2

[3] Yuri Boykov and Vladimir Kolmogorov. An experi-
mental comparison of min-cut/max-flow algorithms for
energy minimization in vision. IEEE transactions on
pattern analysis and machine intelligence, 26(9):1124–
1137, 2004. 2

[4] Kristian Bredies, Karl Kunisch, and Thomas Pock. To-
tal generalized variation. SIAM Journal on Imaging
Sciences, 3(3):492–526, 2010. 3

[5] Brian Curless and Marc Levoy. A volumetric method
for building complex models from range images. In
Proceedings of the 23rd annual conference on Com-
puter graphics and interactive techniques, pages 303–
312, 1996. 2

[6] CyArk. Complex of hu monuments - tomb of tu duc,
vietnam, 2019. 7, 8

[7] CyArk. Palacio tschudi - chan chan, peru, 2020. 7, 8

[8] Danish Agency for Data Supply and Efficiency.
Skraafoto of copenhagen, 2019. 7, 8

[9] Simon Fuhrmann and Michael Goesele. Floating scale
surface reconstruction. ACM Transactions on Graphics
(ToG), 33(4):1–11, 2014. 2

[10] Simon Fuhrmann, Fabian Langguth, and Michael Goe-
sele. Mve-a multi-view reconstruction environment. In
GCH, pages 11–18, 2014. 2, 7, 8

[11] Michael Garland and Paul S Heckbert. Simplifying
surfaces with color and texture using quadric error
metrics. In Proceedings Visualization’98 (Cat. No.
98CB36276), pages 263–269. IEEE, 1998. 7

[12] Andrew V Goldberg, Sagi Hed, Haim Kaplan, Push-
meet Kohli, Robert E Tarjan, and Renato F Werneck.
Faster and more dynamic maximum flow by incremen-
tal breadth-first search. In Algorithms-ESA 2015, pages
619–630. Springer, 2015. 2

[13] Gottfried Graber, Thomas Pock, and Horst Bischof.
Online 3d reconstruction using convex optimization.
pages 708–711, 2011. 2

[14] Jiali Han and Shuhan Shen. Scalable point cloud mesh-
ing for image-based large-scale 3d modeling. Visual
Computing for Industry, Biomedicine, and Art, 2(1):1–
9, 2019. 2

[15] Vu Hoang Hiep, Renaud Keriven, Patrick Labatut, and
Jean-Philippe Pons. Towards high-resolution large-
scale multi-view stereo. pages 1430–1437, 2009. 2

[16] Heiko Hirschmuller. Stereo processing by semiglobal
matching and mutual information. IEEE Transac-
tions on pattern analysis and machine intelligence,
30(2):328–341, 2007. 2, 7, 8

[17] Michal Jancosek and Tomas Pajdla. Exploiting visi-
bility information in surface reconstruction to preserve
weakly supported surfaces. International scholarly
research notices, 2014, 2014. 2

[18] Michael Kazhdan, Matthew Bolitho, and Hugues
Hoppe. Poisson surface reconstruction. 7, 2006. 1

[19] Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein,
and Helmut Mayer. A tv prior for high-quality scalable
multi-view stereo reconstruction. International Journal
of Computer Vision, 124(1):2–17, 2017. 2

[20] Andreas Kuhn and Helmut Mayer. Incremental divi-
sion of very large point clouds for scalable 3d surface
reconstruction. pages 10–18, 2015. 2

[21] Shiwei Li, Sing Yu Siu, Tian Fang, and Long Quan.
Efficient multi-view surface refinement with adaptive
resolution control. pages 349–364, 2016. 2, 4

[22] Paul Merrell, Amir Akbarzadeh, Liang Wang, Philip-
pos Mordohai, Jan-Michael Frahm, Ruigang Yang,
David Nistér, and Marc Pollefeys. Real-time visibility-
based fusion of depth maps. pages 1–8, 2007. 2

[23] Guy M Morton. A computer oriented geodetic data
base and a new technique in file sequencing. 1966. 5

[24] Christian Mostegel, Rudolf Prettenthaler, Friedrich
Fraundorfer, and Horst Bischof. Scalable surface re-
construction from point clouds with extreme scale and
density diversity. pages 904–913, 2017. 2, 7, 8

[25] Thomas Pock, Lukas Zebedin, and Horst Bischof. Tgv-
fusion. pages 245–258, 2011. 2, 3, 6

[26] Tiankai Tu and David R Ohallaron. Balance refinement
of massive linear octree. 2004. 5

[27] Benjamin Ummenhofer and Thomas Brox. Global,
dense multiscale reconstruction for a billion points.
pages 1341–1349, 2015. 2, 3, 4, 7, 8

[28] Benjamin Ummenhofer and Thomas Brox. Global,
dense multiscale reconstruction for a billion points.
International Journal of Computer Vision, pages 1–13,
2017. 2

[29] Hoang-Hiep Vu, Patrick Labatut, Jean-Philippe Pons,
and Renaud Keriven. High accuracy and visibility-
consistent dense multiview stereo. IEEE transac-
tions on pattern analysis and machine intelligence,
34(5):889–901, 2011. 2, 4

[30] Lance Williams. Pyramidal parametrics. In Proceed-
ings of the 10th annual conference on Computer graph-
ics and interactive techniques, pages 1–11, 1983. 3

[31] Christopher Zach. Fast and high quality fusion of depth
maps. 1(2), 2008. 2, 3, 5

[32] Christopher Zach, Thomas Pock, and Horst Bischof. A
globally optimal algorithm for robust tv-l1 range image
integration. pages 1–8, 2007. 2, 3, 6

[33] Yang Zhou, Shuhan Shen, and Zhanyi Hu. Detail pre-
served surface reconstruction from point cloud. Sen-
sors, 19(6):1278, 2019. 2

