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Abstract

This paper considers the objectives of accurate stereo
matching, especially at object boundaries, robustness
against recording or illumination changes and efficiency of
the calculation. These objectives lead to the proposed Semi-
Global Matching method that performs pixelwise matching
based on Mutual Information and the approximation of a
global smoothness constraint. Occlusions are detected and
disparities determined with sub-pixel accuracy. Addition-
ally, an extension for multi-baseline stereo images is pre-
sented. There are two novel contributions. Firstly, a hierar-
chical calculation of Mutual Information based matching is
shown, which is almost as fast as intensity based matching.
Secondly, an approximation of a global cost calculation is
proposed that can be performed in a time that is linear to
the number of pixels and disparities. The implementation
requires just 1 second on typical images.

1. Introduction

Accurate, dense stereo matching is an important require-
ment for many applications, like 3D reconstruction. Most
difficult are often the boundaries of objects and fine struc-
tures, which can appear blurred. Additional practical prob-
lems originate from recording and illumination differences
or reflections, because matching is often directly based on
intensities that can have quite different values for corre-
sponding pixels. Furthermore, fast calculations are often
required, either because of real-time applications or because
of large images or many images that have to be processed
efficiently.

An application were all of the three objectives come to-
gether is the reconstruction of urban terrain, captured by an
airborne pushbroom camera. Accurate matching at object
boundaries is important for reconstructing structured envi-

ronments. Robustness against recording differences and il-
Iumination changes is vital, because this often cannot be
controlled. Finally, efficient (off-line) processing is neces-
sary, because the images and disparity ranges are huge (e.g.
several 100MPixel with 1000 pixel disparity range).

2. Related Literature

There is a wide range of dense stereo algorithms [8]
with different properties. Local methods, which are based
on correlation can have very efficient implementations that
are suitable for real time applications [5]. However, these
methods assume constant disparities within a correlation
window, which is incorrect at discontinuities and leads to
blurred object boundaries. Certain techniques can reduce
this effect [8, 5], but it cannot be eliminated. Pixelwise
matching [1] avoids this problem, but requires other con-
straints for unambiguous matching (e.g. piecewise smooth-
ness). Dynamic Programming techniques can enforce these
constraints efficiently, but only within individual scanlines
[1, 11]. This typically leads to streaking effects. Global ap-
proaches like Graph Cuts [7,2] and Belief Propagation [10]
enforce the matching constraints in two dimensions. Both
approaches are quite memory intensive and Graph Cuts is
rather slow. However, it has been shown [4] that Belief
Propagation can be implemented very efficiently.

The matching cost is commonly based on intensity dif-
ferences, which may be sampling insensitive [1]. Inten-
sity based matching is very sensitive to recording and il-
lumination differences, reflections, etc. Mutual Informa-
tion has been introduced in computer vision for matching
images with complex relationships of corresponding inten-
sities, possibly even images of different sensors [12]. Mu-
tual Information has already been used for correlation based
stereo matching [3] and Graph Cuts [6]. It has been shown
[6] that it is robust against many complex intensity transfor-
mations and even reflections.
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3. Semi-Global Matching
3.1. Outline

The Semi-Global Matching (SGM) method is based on
the idea of pixelwise matching of Mutual Information and
approximating a global, 2D smoothness constraint by com-
bining many 1D constraints. The algorithm is described in
distinct processing steps, assuming a general stereo geom-
etry of two or more images with known epipolar geometry.
Firstly, the pixelwise cost calculation is discussed in Sec-
tion 3.2. Secondly, the implementation of the smoothness
constraint is presented in Section 3.3. Next, the disparity is
determined with sub-pixel accuracy and occlusion detection
in Section 3.4. An extension for multi-baseline matching is
described in Section 3.5. Finally, the complexity and imple-
mentation is discussed in Section 3.6.

3.2. Pixelwise Cost Calculation

The matching cost is calculated for a base image pixel p
from its intensity Ipp and the suspected correspondence ;g
at q = epy (p,d) of the match image. The function ep, (p,d)
symbolizes the epipolar line in the match image for the base
image pixel p with the line parameter d. For rectified im-
ages epm(p,d) = [px — d,py]” with d as disparity.

An important aspect is the size and shape of the area that
is considered for matching. The robustness of matching is
increased with large areas. However, the implicit assump-
tion about constant disparity inside the area is violated at
discontinuities, which leads to blurred object borders and
fine structures. Certain shapes and techniques can be used
to reduce blurring, but it cannot be avoided [5]. Therefore,
the assumption of constant disparities in the vicinity of p is
discarded. This means that only the intensities Ipp and I g
itself can be used for calculating the matching cost.

One choice of pixelwise cost calculation is the sampling
insensitive measure of Birchfield and Tomasi [1]. The cost
Cpr(p,d) is calculated as the absolute minimum difference
of intensities at p and q = ep,,(p,d) in the range of half a
pixel in each direction along the epipolar line.

Alternatively, the matching cost calculation is based
on Mutual Information (MI) [12], which is insensitive to
recording and illumination changes. It is defined from the
entropy H of two images (i.e. their information content) as
well as their joined entropy.

MIII,IQ :Hll +H12 7H11,12 (1)

The entropies are calculated from the probability distri-
butions P of intensities of the associated images.

1
Hi=— /0 Py(i) log Py(i)di @

s
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For well registered images the joined entropy Hj, j, is
low, because one image can be predicted by the other, which
corresponds to low information. This increases their Mu-
tual Information. In the case of stereo matching, one image
needs to be warped according to the disparity image D for
matching the other image, such that corresponding pixels
are at the same location in both images, i.e. I} = I, and
L= fD (Im)-

Equation (1) operates on full images and requires the dis-
parity image a priori. Both prevent the use of MI as match-
ing cost. Kim et al. [6] transformed the calculation of the
joined entropy Hj, ;, into a sum of data terms using Taylor
expansion. The data term depends on corresponding inten-
sities and is calculated individually for each pixel p.

Hyy 1, = Y huy 1y (Iip, Top) 4)
P

The data term hy, 1, is calculated from the probability dis-
tribution Py, ;, of corresponding intensities. The number of
corresponding pixels is n. Convolution with a 2D Gaussian
(indicated by ®g(i,k)) effectively performs Parzen estima-
tion [6].

1
hll b (iak) = _; log(Pll b (iak) ®g(i7k)) ®g(i’k) (5)

The probability distribution of corresponding intensities
is defined with the operator T[], which is 1 if its argument is
true and 0 otherwise.

PR = S Y TR) = ()] (©)
P

Kim et al. argued that the entropy Hj, is constant and
Hj, is almost constant as the disparity image merely redis-
tributes the intensities of I,. Thus, Ay, 1, (Iip,lop) serves as
cost for matching the intensities /1, and lp. However, if
occlusions are considered then some intensities of /; and I
do not have a correspondence. These intensities should not
be included in the calculation, which results in non-constant
entropies Hy, and Hy,. Therefore, it is suggested to calculate
these entropies analog to the joined entropy.

Hy=Y (), hi(i) =~ log(P() @ ¢(0) £ () (1)
P
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The probability distribution P; must not be calculated
over the whole images I; and I, but only over the corre-
sponding parts (otherwise occlusions would be ignored and
Hj, and Hj, would be almost constant). That is easily done
by just summing the corresponding rows and columns of the
joined probability distribution, e.g. Py, (i) = Y4 Pr, 1, (i,k).
The resulting definition of Mutual Information is,

My, 1, =Y mis, 1, (I, Iap) (8a)
P

miy, 1, (i,k) = hy, (i) + iy (k) = hy 1 (k). (8b)

This leads to the definition of the MI matching cost.

CMl(pad) = _Milh,fp(lm) (Ibp;[mq)with q= ebm(pvd) 9)

The remaining problem is that the disparity image is re-
quired for warping I,,, before mi() can be calculated. Kim
et al. suggested an iterative solution, which starts with a
random disparity image for calculating the cost Cys;. This
cost is then used for matching both images and calculating
a new disparity image, which serves as the base of the next
iteration. The number of iterations is rather low (e.g. 3),
because even wrong disparity images (e.g. random) allow a
good estimation of the probability distribution P. This solu-
tion is well suited for iterative stereo algorithms like Graph
Cuts [6], but it would increase the runtime of non-iterative
algorithms unnecessarily.

Therefore, a hierarchical calculation is proposed, which
recursively uses the (up-scaled) disparity image, that has
been calculated at half resolution, as initial disparity. If the
overall complexity of the algorithm is O(WHD) (i.e. width
x height x disparity range), then the runtime at half reso-
lution is reduced by factor 2% = 8. Starting with a random
disparity image at a resolution of ]lﬁth and initially calculat-
ing 3 iterations increases the overall runtime by the factor,

1 1 1 1

1+23+43+83+3163~1.14. (10)

Thus, the theoretical runtime of the hierarchically calcu-
lated Cyy; would be just 14% slower than that of Cpr, ig-
noring the overhead of MI calculation and image scaling. It
is noteworthy that the disparity image of the lower resolu-
tion level is used only for estimating the probability distri-
bution P and calculating the costs Cy; of the higher reso-
lution level. Everything else is calculated from scratch to
avoid passing errors from lower to higher resolution levels.

3.3. Aggregation of Costs

Pixelwise cost calculation is generally ambiguous and
wrong matches can easily have a lower cost than correct

ones, due to noise, etc. Therefore, an additional constraint
is added that supports smoothness by penalizing changes of
neighboring disparities. The pixelwise cost and the smooth-
ness constraints are expressed by defining the energy E (D)
that depends on the disparity image D.

E(D) = ZC(PaDp)+ Z P\ T[|Dp — Dg| = 1]
P qENp
(1D
+ Y P T[|Dp—Dg| > 1]
qENp

The first term is the sum of all pixel matching costs
for the disparities of D. The second term adds a constant
penalty Py for all pixels q in the neighborhood N, of p,
for which the disparity changes a little bit (i.e. 1 pixel).
The third term adds a larger constant penalty P», for all
larger disparity changes. Using a lower penalty for small
changes permits an adaptation to slanted or curved surfaces.
The constant penalty for all larger changes (i.e. indepen-
dent of their size) preserves discontinuities [2]. Discontinu-
ities are often visible as intensity changes. This is exploited
by adapting P» to the intensity gradient, i.e. P, = ﬁ.
However, it has always to be ensured that P, > P;.

The problem of stereo matching can now be formulated
as finding the disparity image D that minimizes the en-
ergy E (D). Unfortunately, such a global minimization (2D)
is NP-complete for many discontinuity preserving energies
[2]. In contrast, the minimization along individual image
rows (1D) can be performed efficiently in polynomial time
using Dynamic Programming [1, 11]. However, Dynamic
Programming solutions easily suffer from streaking [8], due
to the difficulty of relating the 1D optimizations of individ-
ual image rows to each other in a 2D image. The problem
is, that very strong constraints in one direction (i.e. along
image rows) are combined with none or much weaker con-
straints in the other direction (i.e. along image columns).

This leads to the new idea of aggregating matching
costs in 1D from all directions equally. The aggregated
(smoothed) cost S(p,d) for a pixel p and disparity d is cal-
culated by summing the costs of all 1D minimum cost paths
that end in pixel p at disparity d (Figure 1). It is noteworthy
that only the cost of the path is required and not the path
itself.

Let L, be a path that is traversed in the direction r. The
cost L,.(p,d) of the pixel p at disparity d is defined recur-
sively as,

L.(p,d) = C(p,d) +min(L,.(p—r,d),
L;(p—l‘7d—])—‘FP],L;.(p—I',d—i-])—‘rP], (12)
minL,(p—r,i)+P,).

1

The pixelwise matching cost C can be either Cpr or Cyy;.
The remainder of the equation adds the lowest cost of the
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(a) Minimum Cost Path L (p, d) (b) 16 Paths from all Directions r

sl I R 7

Figure 1. Aggregation of costs.
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previous pixel p —r of the path, including the appropriate
penalty for discontinuities. This implements the behavior of
equation (11) along an arbitrary 1D path. This cost does not
enforce the visibility or ordering constraint, because both
concepts cannot be realized for paths that are not identi-
cal to epipolar lines. Thus, the approach is more similar
to Scanline Optimization [8] than traditional Dynamic Pro-
gramming solutions.

The values of L' permanently increase along the path,
which may lead to very large values. However, equation
(12) can be modified by subtracting the minimum path cost
of the previous pixel from the whole term.

Lr(pvd) = C(pad) +m1n(Ll‘(p7 l',d),
L(p—r,d—1)+P,Ly(p—r,d+ 1)+ P, (13)
minLy(p—r,i)+ P») —mkinL..(p—r,k)

1

This modification does not change the actual path
through disparity space, since the subtracted value is con-
stant for all disparities of a pixel p. Thus, the position of the
minimum does not change. However, the upper limit can
now be given as L < Cpgx + P5.

The costs L, are summed over paths in all directions r.
The number of paths must be at least 8 and should be 16 for
providing a good coverage of the 2D image.

S(pvd) :ZLl‘(pad) (14)

The upper limit for S is easily determined as § <
16(Cinax + P2).

3.4. Disparity Computation

The disparity image D), that corresponds to the base im-
age I, is determined as in local stereo methods by selecting
for each pixel p the disparity d that corresponds to the min-
imum cost, i.e. mingS(p,d). For sub-pixel estimation, a
quadratic curve is fitted through the neighboring costs (i.e.
at the next higher or lower disparity) and the position of the
minimum is calculated.

Using a quadratic curve is theoretically justified only for
a simple correlation using the sum of squared differences.
However, is is used as an approximation due to the simplic-
ity of calculation.

The disparity image D,, that corresponds to the match
image I,,, can be determined from the same costs, by travers-
ing the epipolar line, that corresponds to the pixel q of the
match image. Again, the disparity d is selected, which cor-
responds to the minimum cost, i.e. mingS(e,(q,d),d).
However, the cost aggregation step does not treat the base
and match images symmetrically. Therefore, better results
can be expected, if D, is calculated from scratch. Outliers
are filtered from D; and D,,, using a median filter with a
small window (i.e. 3 x 3).

The calculation of Dy, as well as D, permits the deter-
mination of occlusions and false matches by performing a
consistency check. Each disparity of D, is compared with
its corresponding disparity of D,,. The disparity is set to
invalid (Djy,) if both differ.

Do — Dypyp if |Dbp_qu| < ],q:ebm(vabp)» 1
p = . (15)
D;,, otherwise.

The consistency check enforces the uniqueness con-
straint, by permitting one to one mappings only.

3.5. Extension for Multi-Baseline Matching

The algorithm could be extended for multi-baseline
matching, by calculating a combined pixelwise matching
cost of correspondences between the base image and all
match images. However, valid and invalid costs would be
mixed near discontinuities, depending on the visibility of a
pixel in a match image. The consistency check (Section 3.4)
can only distinguish between valid (visible) and invalid (oc-
cluded or mismatched) pixels, but it can not separate valid
and invalid costs afterwards. Thus, the consistency check
would invalidate all areas that are not seen by all images,
which leads to unnecessarily large invalid areas. Without
the consistency check, invalid costs would introduce match-
ing errors near discontinuities, which leads to fuzzy object
borders.

Therefore, it is better to calculate several disparity im-
ages from individual image pairs, exclude all invalid pixels
by the consistency check and then combine the result. Let
the disparity Dy be the result of matching the base image
I, against a match image I,,x. The disparities of the images
Dy, are scaled differently, according to some factor #;. For
rectified images, this factor corresponds to the length of the
baseline between I;, and I,,.

The robust combination selects the median of all dispar-

.. D L .
ities % for a certain pixel p. Additionally, the accuracy
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is increased by calculating the weighted mean of all correct
disparities (i.e. within the range of 1 pixel around the me-
dian). This is done by using #; as weighting factor.

~ Ykev, Dip
p=—2 P
Yiev, I

D Dp| 1
D , V,,:{k|‘£—med—"’ < -1} (16)
7% i 7%

This combination is robust against matching errors in
some disparity images and it also increases the accuracy.

3.6. Complexity and Implementation

The calculation of the pixelwise cost Cyy starts with col-
lecting all alleged correspondences (i.e. defined by an ini-
tial disparity as described in Section 3.2) and calculating
Py, 1,. The size of P is the square of the number of inten-
sities, which is constant (i.e. 256 x 256). The subsequent
operations consist of Gaussian convolutions of P and calcu-
lating the logarithm. The complexity depends only on the
collection of alleged correspondences due to the constant
size of P. Thus, O(WH) with W as image width and H as
image height.

The pixelwise matching costs for all pixels p at all dis-
parities d are scaled to 11 bit integer values and stored in
a 16 bit array C(p,d). Scaling to 11 bit guarantees that all
aggregated costs do not exceed the 16 bit limit. A second 16
bit integer array of the same size is used for the aggregated
cost values S(p,d). The array is initialized with 0. The
calculation starts for each direction r at all pixels b of the
image border with Ly (b,d) = C(b,d). The path is traversed
in forward direction according to equation (13). For each
visited pixel p along the path, the costs L;(p,d) are added
to S(p,d) for all disparities d. The calculation of equation
(13) requires O(D) steps at each pixel, since the minimum
cost of the previous pixel (e.g. ming Ly (p — r,k)) is constant
for all disparities and can be pre-calculated. Each pixel is
visited exactly 16 times, which results in a total complexity
of O(WHD). The regular structure and simple operations
(i.e. additions and comparisons) permit parallel calculations
using integer based SIMD! assembler instructions.

The disparity computation and consistency check re-
quires visiting each pixel at each disparity a constant num-
ber of times. Thus, the complexity is O(WHD) as well.

The 16 bit arrays C and S have a size of W x H X D,
which can exceed the available memory for larger images
and disparity ranges. The suggested remedy is to split the
input image into tiles, which are processed individually.
The tiles overlap each other by a few pixels, since the pix-
els at the image border receive support by the global cost
function only from one side. The overlapping pixels are ig-
nored for combining the tiles to the final disparity image.

!'Single Instruction, Multiple Data

This solution allows processing of almost arbitrarily large
images.

4. Experimental Results

4.1. Stereo Images with Ground Truth

Three stereo image pairs with ground truth [8, 9] have
been selected for evaluation (first row of Figure 2). The
images 2 and 4 have been used from the Teddy and Cones
image sequences. All images have been processed with a
disparity range of 32 pixel.

The MWMF method is a local, correlation based, real
time algorithm [5], which has been shown [8] to produce
better object borders (i.e. less fuzzy) than many other local
methods. The second row of Figure 2 shows the resulting
disparity images. The blurring of object borders is typical
for local methods. The calculation of Teddy has been per-
formed in just 0.071s on a Xeon with 2.8GHz.

Belief Propagation (BP) [10] minimizes a global cost
function (e.g. equation (11)) by iteratively passing mes-
sages in a graph that is defined by the four connected im-
age grid. The messages are used for updating the nodes of
the graph. The disparity is in the end selected individually
at each node. Similarly, SGM can be described as passing
messages independently, from all directions along 1D paths
for updating nodes. This is done sequentially as each mes-
sage depends on one predecessor only. Thus, messages are
passed through the whole image. In contrast, BP sends mes-
sages in a 2D graph. Thus, the schedule of messages that
reaches each node is different and BP requires an iterative
solution. The number of iterations determines the distance
from which information is passed in the image.

The efficient BP algorithm? [4] uses a hierarchical ap-
proach and several optimizations for reducing the complex-
ity. The complexity and memory requirements are very sim-
ilar to SGM. The third row of Figure 2 shows good results
of Tsukuba. However, the results of Teddy and especially
Cones are rather blocky, despite attempts to get the best re-
sults by parameter tuning. The calculation of Teddy took
4.5s on the same computer.

The Graph Cuts method® [7] iteratively minimizes a
global cost function (e.g. equation (11) with P; = P») as
well. The fourth row of Figure 2 shows the results, which
are much better for Teddy and Cones, especially near ob-
ject borders and fine structures like the leaves. However,
the complexity of the algorithm is much higher. The calcu-
lation of Teddy has been done in 55s on the same computer.

The results of SGM with Cpr as matching cost (i.e. the
same as for BP and GC) are shown in the fifth row of Figure

Zhttp://people.cs.uchicago.edu/ pff/bp/
3http://www.cs.cornell.edu/People/vnk/software. html
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Tsukuba (384 x 288, Disp. 32)

Left Images

Local, correlation
(MWMF)

Belief Propagation
(BP)

Graph Cuts (GC)

SGM with BT
(i.e. intensity based
matching cost)

SGM with HMI,
(i.e. hierarchical
Mutual Information
as matching cost)

Figure 2. Comparison of different stereo methods.
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Modified Right Image

Resulting Disparity Image (SGM HMI)

. e .

Figure 3. Result of matching modified Teddy images with SGM (HMI).

2, using the best parameters for the set of all images. The
quality of the result comes close to Graph Cuts. Only, the
textureless area on the right of the Teddy is handled worse.
Slanted surfaces appear smoother than with Graph Cuts, due
to sub pixel interpolation. The calculation of Teddy has
been performed in 1.0s. Cost aggregation requires almost
half of the processing time.

The last row of Figure 2 shows the result of SGM with
the hierarchical calculation of Cy;; as matching cost. The
disparity image of Tsukuba and Teddy appear equally well
and Cones appears much better. This is an indication that
the matching tolerance of MI is beneficial even for carefully
captured images. The calculation of Teddy took 1.3s. This
is just 30% slower than the non-hierarchical, intensity based
version.

The disparity images have been compared to the ground
truth. All disparities that differ by more than 1 are treated
as errors. Occluded areas (i.e. identified using the ground
truth) have been ignored. Missing disparities (i.e. black
areas) have been interpolated by using the lowest neighbor-
ing disparities. Figure 4 presents the resulting graph. This
quantitative analysis confirms that SGM performs as well as
other global approaches. Furthermore, MI based matching
results in even better disparity images.

Errors of different methods

18
MWMF == '
16 - BP == 7
14 GC mmm i
SGM (BT)
12 SGM (HMI) memmm T
& qot -
S 8t .
w 6 | i
4 i
2 -
0

Tsukuba

Teddy Cones

Figure 4. Errors of different stereo methods.

The power of MI based matching can be demonstrated by
manually modifying the right image of Teddy by dimming
the upper half and inverting the intensities of the lower half
(Figure 3). Such an image pair cannot be matched by inten-
sity based costs. However, the MI based cost handles this
situation easily as shown on the right. More examples about
the power of MI based stereo matching are shown by Kim
et al. [6].

4.2. Stereo Images of an Airborne Pushbroom Cam-
era

The SGM (HMI) method has been tested on huge im-
ages (i.e. several 100MPixel) of an airborne pushbroom
camera, which records 5 panchromatic images in different
angles. The appropriate camera model and non-linearity of
the flight path has been taken into account for calculating
the epipolar lines.

A difficult test object is Neuschwanstein castle (Figure
5a), because of high walls and towers, which result in high
disparity changes and large occluded areas. The castle has
been recorded 4 times using different flight paths. Each
flight path results in a multi-baseline stereo image from
which the disparity has been calculated. All disparity im-
ages have been combined for increasing robustness.

Figure 5b shows the end result, using a hierarchical,
correlation based method [13]. The object borders appear
fuzzy and the towers are mostly unrecognized. The result
of the SGM (HMI) method is shown in Figure 5c. All ob-
ject borders and towers have been properly detected. Stereo
methods with intensity based pixelwise costs (e.g. Graph
Cuts and SGM (BT)) failed on these images completely,
because of large intensity differences of correspondences.
This is caused by recording differences as well as unavoid-
able changes of lighting and the scene during the flight (i.e.
corresponding points are recorded at different times on the
flight path). Nevertheless, the MI based matching cost han-
dles the differences easily.

The processing time is one hour on a 2.8GHz Xeon for
matching 1 1MPixel of a base image against 4 match images
with an average disparity range of 400 pixel.
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(a) Top View of Neuschwanstein

(b) Result of Correlation Method

(c) Result of SGM (HMI)

.‘

Figure 5. Neuschwanstein castle (Germany), recorded by an airborne pushbroom camera.

5. Conclusion

It has been shown that a hierarchical calculation of a
Mutual Information based matching cost can be performed
at almost the same speed as an intensity based matching
cost. This opens the way for robust, illumination insensitive
stereo matching in a broad range of applications. Further-
more, it has been shown that a global cost function can be
approximated efficiently in O(WHD).

The resulting Semi-Global Matching (SGM) method
performs much better matching than local methods and is
almost as accurate as global methods. However, SGM is
much faster than global methods. A near real-time perfor-
mance on small images has been demonstrated as well as an
efficient calculation of huge images.
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