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Abstract - Zusammenfassung 

On Adaptive Sampling. We analyze the storage/accuracy trade-off of an adaptive sampling algorithm 
due to Wegman that makes it possible to evaluate probabilistically the number of distinct elements in a 
large file stored on disk. 

AMS Subject Classifications: 68C25,68E99. 
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Adaptives Abtasten. Wir untersuchen das Verhaltnis SpeichergroDe zu Genauigkeit eines adaptiven 
Abtast-Algorithmus von Wegman, der es ermoglicht die Anzahl der verschiedenen Elemente einer 
grol3en Datei die auf Magnetplatte abgespeichert ist, abzuschatzen. 

1. Introduction 

A problem that naturally arises in query optimization of data base systems [l] is 
to estimate the number of distinct elements (also called cardinality) of a large 
collection of data with unpredictable replications. The trivial solution that consists 
in building a list of distinct elements is usually too much resource consuming both 
in terms of storage and processing time requirements. 

In [4] the authors have presented a solution called Probabilistic Counting that 
estimates the cardinality of a large file typically stored on disk; when using m words 
of in-core memory the algorithm presents an expected relative accuracy close to 

0.78 - 
Jm’ 

and it performs only a constant number of operations per element of the file. 
Wegman [ 1 11 has proposed an interesting alternative solution to that problem 
based on Adaptive Sampling techniques that is of comparable structural complexity. 
The Adaptive Sampling algorithm is also probabilistic in nature. We establish 
here that its expected relative accuracy is close to 

1.20 - 
Jm 
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when rn words of memory are used, SO that its accuracy is roughly 50% less than 
that of Probabilistic Counting. The method however has some advantages in terms 
of processing time and of conceptual simplicity. It is also totally free of non- 
linearities when estimating the cardinalities of small files, a feature that may prove 
useful in several applications. (In contrast, Probabilistic Counting is only asympto- 
tically unbiased.) 

Astrahan et al. [ 11 report on their experience with implementing Probabilistic 
Counting and Adaptive Sampling in the context of IBM’s database system R. In 
terms of processing time, these probabilistic algorithms typically outperform stan- 
dard sorting methods by a factor of about 8. In terms of storage consumptions, Our 
formulae show that using 100 words of memory will provide for a typical accuracy 
of 12% for Adaptive Sampling (8%, asymptotically, for Probabilistic Counting). This 
is to be contrasted again with sorting, where the auxiliary memory required has to 
be at least as large as the file itself! Some simulation results on Adaptive Sampling 
that support our analysis are presented in Section 4. 

2. Wegman’s Adaptive Sampling Method 

The problem discussed here is the following. We are given a large collection F of 
data (typically a subset of a data base) which consists of records belonging to a given 
universe U (e.g. alphanumerical strings with length 5 20, if we consider some name 
fields). File F consists of data with “unpredictable” replications, in the sense that no 
statistical data model accounting for replications is available or applicable. 

Sorting, eliminating duplicates then counting what remains is of course a solution, 
but it has the obvious disadvantages already mentioned in the introduction. 

In contrast to sorting and like Probabilistic Counting, Wegman’s Adaptive Sam- 
pling method-AS for short-is based on observing bits of hashed values of records 
scanned. We thus assume a hashing function is given that hashes elements of the 
universe of records U into sufficiently long bit streams. The algorithm is probabi- 
listic in the sense that the result depends on the way the data (from the input file F )  
behaves with respect to the particular hash function selected. Accordingly, our 
analysis will also be probabilistic. (See Section 3 for a discussion of the analysis 
model.) 

The algorithm also depends on the choice of a sequence of ~~~~~~~~~~~~~~-i.e. 
sets-of bit streams Po, PI, , . . , of which we shall soon fix a particular instance. 
Properties pj are assumed to be such that Po 3 PI 3 P 2 . . .  with the further 
conditions, 

Proba(x E 4)  = 2- j .  

(Po is the universal predicate.) 

At every stage the algorithm keeps a list of at most rn sampled (distinct) hashed 
values, where rn is a design parameter that determines the accuracy of the method, 
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and an integer index 6 that corresponds to the current depth of sampling. Algorithm 
A S  starts in phase 0 (depth is 6 = 0) by building a list without replications of hashed 
values of records encountered until (rn + 1) such values have been found: At this 
time, the list of samples overflows; depth is increased to 6 = 1, the list is scanned 
and only those hashed values that satisfy P, are kept. Next, we resume scanning the 
file; the list is updated by appending those hashed values of elements that now satisfy 
P, and we continue until the list again overflows (reaches cardinality m + 1). At this 
point, the process repeats itself: We only retain those elements that satisfy property 
P2,  increase the depth to 6 = 2 etc. 

In this way, at a phase where depth has value 6, the list keeps all elements (or rather 
their hashed values) that satisfy Pa, so that if e is the cardinality of the list, quite 
naturally, we may propose 

2& e 
as an estimate of the cardinality of the file. 

One particulary simple way of implementing AS consists in choosing for 4 the set 
(W(0 + 1)*> consisting of all bit streams that begin with a sequence of at least j 
0-bits. A specification of the corresponding algorithm is given in Figure 1 and an 
example of execution is displayed on Figure 2. We shall henceforth assume that this 
choice of pi‘s has been made. (One could have used further randomization on the 
by taking as PJ the set of binary streams that start with b, b, . . . bj for some randomly 
preselected b,, b2, etc.) 

program Adaptive Sampling; 
{Estimates the cardinality of a file F using a list of samples, LIST}. 
const m = 64; 
(accuracy is 1.20/&, rn = 64 gives about 15% accuracy} 
var F: file of records; LIST, TEMPLIST: list of records; 

x : records; y : bitstream; depth : integer; 
procedure hash(x : records) : bitstream; external; 
begin 

depth := 0; 
for x in F do begin {Main scan loop} 

if not (hash(x) E LIST) then 
if (hash(x) E Odepth(O + 1)*) then 

- LIST = LISTV {hash(x)}; 
if lLZSTl > m then {Increase depth and split} 

repeat 
depth := depth + 1; TEMPLIST := 0; 
for y in LIST do 

if ( y  E Odepth(O + 1)*) then 
TEMPLIST := TEMPLZST v { y}; 

LIST := TEMPLIST; 
until ILISTl 5 rn; {Splitting done!} 

end {Main scan loop} 
return (2depth x I LIST[); 

end. 

Figure 1. Wegman’s Adaptive Sampling Algorithm 
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RECORD HASHED LIST of SAMPLES depth Estim # Exact # 

UDINE 
NICE* 
PARIS 
BORDE 
NAFPL 
PARIS 
BORDE 
MARSE 
RENNE 
LEIPZ 
CAEN* 
QUEBE 
MARSE 
CAEN* 
PEA* 

10101 
00101 
1101 1 
01001 
1 1  101 
1101 1 
01001 
01010 
10100 
oO010 
10001 
00111 
01010 
10001 
00100 

{ 10101} 
{ 10101,00101} 
(10101,00101,11011} 
(00101,01001) 
(00101,01001) 
(00101, Olool} 
(00101,01001) 
(00101,01001,01010} 
(00101,01001, ololo} 
{ 001 01, 000lO} 
(00101, 000lO} 
(00101,oO010,0011 l} 
(00101,00010,001 1 l} 
{00101,oO010,0011 l} 
(00010} 

0 
0 
0 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
3 

1 
2 
3 
4 
4 
4 
4 
6 
6 
8 
8 
12 
12 
12 
8 

1 
2 
3 
4 
5 
5 
5 
6 
7 
8 
9 
10 
10 
10 
11 

Figure 2. A typical execution of Adaptive Sampling with m = 3. File F consists here of 15 records (1st 
column) that are city code names in the form of alphanumerical strings; the corresponding hashed values 
over L‘ = 5 bits appear in column 2. The third column shows the evolution of the LIST which keeps the 
elements that have been sampled. Column 4 displays sampling depth at each stage, with the running 
estimates for cardinality in column 5, and the exact cardinalities in the last column. The final estimate 
provided by Adaptive Sampling for the cardinality of F is 8 while the exact cardinality is 11. 

The idea underlying AS has relations to dynamic hashing of Larson [SI and 
extendible hashing of Fagin et al. [3], since it amounts to keeping only one page of 
the file under either of these algorithms. 

3. Analysis 

The analysis which we provide for Adaptive Sampling is made under the following 
probabilistic model: Hashed values of records are infinitely long bit streams that 
are independently and uniformly distributed over (0, l}“. This is of course a simpli- 
fication of reality; it is equivalent to assuming a uniform hash function from the 
universe U of records to infinite binary strings. 

In other words, for analysis purpose, we assume that instead of elements of F ,  we 
are provided directly with a number n (unknown, to be estimated on the fly) of 
random uniform infinitely long binary strings. 

The uniformity assumption is normally, with a careful implementation, justified 
since empirical studies (see [9] or [4] and references therein) confirm that this model 
matches reality extremely well under the following two conditions: (i) a “reasonable” 
hashing function is used, like multiplicative hashing; (ii) enough randomness is 
available in the data in the sense that the hash function is used as an ‘‘information 
reduction” function (i.e. 2‘ << IUI where t is the actual finite length of hashed values). 

Considering hashed values to be infinitely long, i.e. assuming a collision free hash 
function, is harmless as long as we estimate cardinalities n such that n << 2‘ (say 
100n I 2‘), where e is the actual finite length of hashed values. 

I 
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Now that the probabilistic model of use has been specified, we can introduce the 
analysis. The analysis will establish in passing that algorithm AS is unbiased, and 
more importantly that the relative accuracy is expected to be close to 1.20/&. The 
analysis decomposes into 4 phases. 

A. Recurrences. The cardinality estimate provided by adaptive sampling can also 
be viewed as a recursively defined parameter of sets of binary strings, whence 
recurrences for expected values. 

B. Generating Functions, The recurrences for the mean value of the estimate of AS 
and its standard deviation (actually second moment) are solved by introducing 
suitable generating functions. 

C .  Elementary Approximations. These reduce the standard deviation of the estimate 
to a simpler asymptotic form. 

D. Mellin Transforms. As is customary with analyses of these sort, there are some 
hidden periodicities which, although not numerically important, render the 
analytic process more intricate. The Mellin integral transform turns out to be 
the method of choice for the final asymptotic estimates. 

We now execute this programme. 

A. Recurrences. By construction, algorithm AS is insensitive to the structure of 
replications in the file operated upon. If n hashed values (bit streams) are drawn 
according to the previously defined model, then the probability that k of these start 
with a O-bit is the Bernoulli probability: 

1 n  
Bn,k =-( 2" k ) * 

Let o be a finite subset of (0,l)"; denote by o / O  the set: 

o/o = ( y  E (0,1}"10y E 0) 

with a similar definition for o/l. Let K ( o )  be the estimate provided by algorithm 
AS. Then K admits the inductive definition: 

2K(o/0)  if lo1 > m 
= { 101 otherwise 

Let K ,  denote the expectation of the random variable K ( o )  when a random n-subset 
o of (0, l}" is chosen; similarly let L, denote the expectation of K 2 ( u ) ,  that 
is the second moment of K.  From the recursive definition (2) with the expres- 
sion (1) for the Bernoulli probabilities, we find the following relations valid for 
n > m, 
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together with the initial conditions: K ,  = n, L, = n2, when n I m. These permit 
already to determine numerically the exact values of K ,  and L,. 

B. Generating Functions. We proceed by introducing the corresponding exponential 
generating functions: 

,n ..n 

In this way, Equations (3), (4) translate into the difference equations: 

K ( x )  = 2eXl2K(x/2) + a(x) ,  

L(x) = 4exi2L(x/2) + b(x) ,  
( 5 )  

(6) 

for two polynomials a(x)  and b(x)  of degree at most m that are easily determined 
from the initial conditions. We find 

a(x)  = 0 ;  b(x)  = em-,@), 

where e&) denotes the truncated exponential: 

The solution to equation (5) with the corresponding initial conditions is easily 
checked to be: 

K ( x )  = xex ,  

so that we have, as anticipated, K ,  = n. 

Proposition 1: Adaptive Sampling (AS)  is unbiased in the sense that when the input 
are uniformly distributed binary streams, the expectation of the estimate of the cardi- 
nality of a file that if provides is equal to the cardinality of the file. 

We now turn to the more interesting problem of estimating the accuracy of algor- 
ithm AS. To that purpose, in order to be able to solve generating function equations 
by iteration, we introduce the modified function: 

L , ( x )  = ~ ( x )  - xex - x2ex.  

That function satisfies the equation: 

L, (x )  = 4 e x / 2 ~ , ( x )  + x(ex - em-,(x)). (7) 

Since we have L,(x)  = 0(x3) as x + 0, equation (7) can now be solved by iteration 
and we find (see [6] for a general framework): 
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From (8), we can compute Taylor coefficients explicitly and we get': 

= n ! [ x " ] L , ( x )  = n LLfl - 2kC1 - / 1 , - ~ , ~ . - ~ ( 1 / 2 k ) ] ,  
k > O  

where p,,, denotes the truncated binomial series 

corresponding to the initial terms of the binomial expansion of ( ( 1  - a) + a).. 

Since L, = Ll,, + n2 and since K, = n, we have: 

Proposition 2: The variance of the estimate of algorithm AS when applied to n 
uniformly drawn binary streams is given by 

C. Elementary Approximations. Similar sums appear not too unexpectedly in the 
analysis of Dynamic and Extendible Hashing Algorithms [ l o ] .  The standard route 
starts by replacing V ,  in the above formula by an exponential approximation 

(1 - a)n FZ e-na, 

and using this inside formula (10) can be justified easily following the lines of 
[7, p. 1311. This gives rise to the estimate 

v, = u, + o(n2),  

and 

Notice that u, represents the variance of the estimate when the number of input 
streams is a random variable that obeys a Poisson Law with parameter n. 

D. Mellin Transforms. At this point, we plunge into analysis, using Mellin trans- 
form techniques, a route again inspired by the corresponding treatment in [ 7 ] .  (See 
also [ S I  for a more general presentation of the method.) 

The Mellin transform of a real function f (x) is a complex function denoted as f *(s) 
and defined by 

F*(s) = jom F(x)x"' dx. 

We consider the real function: 

~ ( x )  = 2k[1  - e - X / 2 k e m - 1 ( ~ / 2 k ) ] .  

Its Mellin transform F*(s) exists for - 2  < %(s) < - 1 and is easily determined 
using basic principles [ 2 ] ,  as we now explain. 

' We let as usual [x"] f(x) denote the coefficient of x" in the Taylor expansion of f ( x )  at 0. 
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1. The Mellin transform of e-x is the Gamma function and more generally, one 
has 

lom [l - e-xem-l(x)]xs-l dx = T(s)  (s ;:; '> 
an equation valid for -m < %(s) < 0. 

2. The transform of f(ax) is a-"f(s), so that formally the transform of a sum 

x k a k f ( Y k x )  is 

From these observations, we get the Mellin transform of F(x) ,  namely 

Using the familiar inversion theorem for Mellin transforms, we can recover F ( x )  as 

F(x)  = - F*(s)x-"ds, 
2i71 s-312+iw -3/2-im 

and classically obtain terms of the asymptotic expansion of F ( x )  by moving the line 
of integration to the right (say to the line %(s) = 10) only taking residues into 
account. In this way, denoting by Res[h(s)] the residue of function h(.) at s, we 
get: 

F ( x )  = -E Res[F*(s)x-"1 + 0(x-lo). 

There the sum is extended to all poles of F* in the strip -3/2 < %(s) < 10, that is 
to the points: 

= - 1 + 2ikn/log2, 

S 

a, = - 1 ;  k E Z\{O). 

At s = a. = - 1, the residue of F*(s) is found to be equal to 

- l/((m - 1) log 2). 

Computing other residues in a similar fashion we get the asymptotic expansion 
of F ( x )  towards infinity whence the corresponding result for v, and finally V,. We 
find: 

Theorem 1: The variance of Adaptive Sampling when applied to n random binary 
system satisfies the relation 

where P(u) is a periodic function of u with mean value 0 and Fourier expansion 
p(u)  = x k . Z \ { O } P k  e-2iku such that 

2ikzflog2 + m - 2 
p k = L r ( - l + g ) (  log 2 m - 1  
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4. Conclusions 

If we neglect the periodic fluctuations in the variance of the estimate provided by 
Adaptive Sampling (the amplitudes of these fluctuations are as usual very small; 
alternatively, we ‘‘average’’ the values of the variance considering that log, n is 
uniformly distributed modulo l), we find the approximate expression V ,  M n2/ 
( (m - l)log2). What is of interest in the context of probabilistic estimation algo- 
rithms of this sort is the ‘‘standard error” (a measure of the expected relative 
error) defined as the quotient of the standard deviation of the estimate by the exact 
value n, i.e. T/n1I2/n. This quantity is a function of m, with little dependence on n, as 
is seen from the asymptotic form of V ,  given by Theorem 1. As expected, if we use 
more memory (i.e. m gets larger), the accuracy of the results is going to be better. 
Summarizing our previous discussion, we have established: 

Fact 1: The accuracy, of Adaptive Sampling measured by the standard error, when m 
words of memory3 are used is closely approximated by the formula 

n ( m )  M 1.20/Jm (13) 
We have conducted several experiments on actual text files (AS-Text in Fig. 3) 
representing on-line documentation available on one of our systems. The files range 
in size from a few kilobytes to about half a megabyte with cardinalities (there records 
are lines of text) in the range 1000-17000. To each of the 8 files, 9 different 
multiplicative hashing functions have been applied resulting in a total of 72 simu- 
lations for each value of m. We have considered the following values of m: 8,16,32, 
64, 128, 256. In addition, for each of these values of m, we have conducted 600 
simulations on files obtained from random number generators (AS-Rand in Fig. 3) 
with 100 simulations for cardinalities equal to 5000,6000,7000,8000,9000, 10000. 

m AS-Text AS-Rand n ( m )  PC 
8 37.6% 42.4% 42.4% 31.9 % 

16 25.3% 30.2% 30.0% 19.3 % 
32 17.8% 21.6% 21.2% 12.9 % 
64 13.8% 14.6% 15.0% 9.6 % 

128 10.5% 10.8% 10.6% 6.6 % 
256 6.7% 7.3% 7.5% 4.65% 

Figure 3. A comparison of the empirical standard error of Adaptive Sampling on textual data (AS-Text) 
or random numerical data (AS-Rand), against the theoretical prediction n ( m )  given in Eq. (13), and 
against corresponding simulations for Probabilistic Counting (PC). 

These simulations validate our estimates: no detectible bias occurs, and the observed 
relative errors are very close to the predicted value n ( m )  given by formula (13). 

Observe that the accuracy is defined here in terms of a standard deviation, that is using a quadratic 
(L’) norm. When compared to the expected error in the sense of the L’ norm, our definition provides 
a slightly pessimistic estimate. 
With machine word lengths 2 32 and file sizes 5 lo9, we may freely assume that a hashed value fits in 
a single word. 
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For reference, results are also compared with those of Probabilistic Counting 
(PC) as given in [4], themselves based on 160 simulations (16 files x 10 hashing 
functions). 

Conclusions. Adaptive Sampling is an unbiased estimator of cardinalities of large 
files that necessitates minimal auxiliary storage and processes data in a single pass. 
Theoretical predictions on the accuracy of the method based on the formula 
1.20/& match reality quite well. Adaptive Sampling appears to be about 50% less 
accurate than Probabilisitc Counting when using comparable memory size (the m 
parameter); accordingly, to attain the same accuracy, AS would need to use about 
twice as much space. However algorithm AS is completely free of non-linearities for 
smaller values of cardinalities n; it may also have some advantage in terms of 
processing time on large files, since then the computations in the inner loop hardly 
ever require more than hashing and a simple test, while Probabilistic Counting 
requires also one address computation and an update of a BITMAP vector. 
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