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Exact algorithms or intelligent exhaustive
search: finding an optimal solution without
going through all candidate solutions
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3-Satisfiability (3-SAT)

Input: A set of clauses, each containing at
most three literals (that is, a
3-CNF formula).

Output: Find a satisfying assignment
(if exists).



Examples

The formula

(x ∨ y ∨ z)(x ∨ y)(y ∨ z)

is satisfiable: set x = y = z = 1 or
x = 1, y = z = 0.
The formula

(x∨y ∨z)(x∨y)(y ∨z)(z∨x)(x∨y ∨z)

is unsatisfiable.



A brute force search algorithm checking
satisfiability of a 3-CNF formula F with n

variables, goes through all assignments and
has running time O(|F | · 2n).

Goal
Avoid going through all 2n assignments
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Main Idea of Backtracking

Construct a solution piece by piece

Backtrack if the current partial solution
cannot be extended to a valid solution
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SolveSAT(F )

if F has no clauses:
return “sat”

if F contains an empty clause:
return “unsat”

x ← unassigned variable of F

if SolveSAT(F [x ← 0]) = “sat”:
return “sat”

if SolveSAT(F [x ← 1]) = “sat”:
return “sat”

return “unsat”
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Thus, instead of considering all 2n

branches of the recursion tree, we track
carefully each branch

When we realize that a branch is dead
(cannot be extended to a solution),
we immediately cut it
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Backtracking is used in many
state-of-the-art SAT-solvers

SAT-solvers use tricky heuristics to
choose a variable to branch on and to
simplify a formula before branching
Another commonly used technique is
local search — will consider it in the
next part
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Start with a candidate
solution

Iteratively move from
the current candidate
to its neighbor trying
to improve the
candidate
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Let F be a 3-CNF formula over variables
x1, x2, . . . , xn

A candidate solution is a truth
assignment to these variables, that is,
a vector from {0, 1}n



Let F be a 3-CNF formula over variables
x1, x2, . . . , xn

A candidate solution is a truth
assignment to these variables, that is,
a vector from {0, 1}n



Definition
Hamming distance (or just distance) between
two assignments 𝛼, 𝛽 ∈ {0, 1}n is the
number of bits where they differ:
dist(𝛼, 𝛽) = |{i : 𝛼i ̸= 𝛽i}| .

Definition
Hamming ball with center 𝛼 ∈ {0, 1}n and
radius r , denoted by ℋ(𝛼, r), is the set of all
truth assignments from {0, 1}n at distance
at most r from 𝛼.
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Example

ℋ(1011, 0) = {1011}

ℋ(1011, 1) =
{1011, 0011, 1111, 1001, 1010}
ℋ(1011, 2) =
{1011, 0011, 1111, 1001, 1010,
0111, 0001, 0010, 1101, 1110, 1000}
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Searching a Ball for a Solution

Lemma
Assume that ℋ(𝛼, r) contains a satisfying
assignment 𝛽 for F . We can then find a
(possibly different) satisfying assignment in
time O(|F | · 3r).



Proof
If 𝛼 satisfies F , return 𝛼

Otherwise, take an unsatisfied clause — say,
(xi ∨ x j ∨ xk)

𝛼 assigns xi = 0, xj = 1, xk = 0

Let 𝛼i , 𝛼j , 𝛼k be assignments resulting from 𝛼
by flipping the i -th, j-th, k-th bit, respectively

Crucial observation: at least one of them is
closer to 𝛽 than 𝛼

Hence there are at most 3r recursive calls
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CheckBall(F , 𝛼, r)
if 𝛼 satisfies F:

return 𝛼

if r = 0:
return “not found”

xi , xj , xk ← variables of unsatisfied clause
𝛼i , 𝛼j , 𝛼k ← 𝛼 with bits i , j , k flipped
CheckBall(F , 𝛼i , r − 1)
CheckBall(F , 𝛼j , r − 1)
CheckBall(F , 𝛼k , r − 1)
if a satisfying assignment is found:

return it
else:

return “not found”
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Assume that F has a satisfying
assignment 𝛽

If it has more 1’s than 0’s then it has
distance at most n/2 from all-1’s
assignment
Otherwise it has distance at most n/2
from all-0’s assignment
Thus, it suffices to make two calls:
CheckBall(F , 11 . . . 1, n/2) and
CheckBall(F , 00 . . . 0, n/2)
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Running Time

The running time of the resulting
algorithm is
O(|F | · 3n/2) ≈ O(|F | · 1.733n)

On one hand, this is still exponential
On the other hand, it is exponentially
faster than a brute force search
algorithm that goes through all 2n truth
assignments!
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Traveling salesman problem (TSP)

Input: A complete graph with weights on
edges and a budget b.

Output: A cycle that visits each vertex
exactly once and has total weight
at most b.

It will be convenient to assume that vertices
are integers from 1 to n and that the
salesman starts his trip in (and also returns
back to) vertex 1.



Traveling salesman problem (TSP)

Input: A complete graph with weights on
edges and a budget b.

Output: A cycle that visits each vertex
exactly once and has total weight
at most b.

It will be convenient to assume that vertices
are integers from 1 to n and that the
salesman starts his trip in (and also returns
back to) vertex 1.



Example

1

2

5

3

4

5

2

4

2

2

1

13

3
3



Example

1

2

5

3

4

5

2

4

2

2

1

13

3
3

length: 15



Example

1

2

5

3

4

5

2

4

2

2

1

13

3
3

length: 11



Example

1

2

5

3

4

5

2

4

2

2

1

13

3
3

length: 9



Brute Force Solution
A naive algorithm just checks all possible
(n − 1)! cycles.

This part

Use dynamic programming to solve TSP
in O(n2 · 2n)
The running time is exponential, but is
much better than (n − 1)!.
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Dynamic Programming
We are going to use dynamic
programming: instead of solving one
problem we will solve a collection of
(overlapping) subproblems

A subproblem refers to a partial solution
A reasonable partial solution in case of
TSP is the initial part of a cycle
To continue building a cycle, we need to
know the last vertex as well as the set of
already visited vertices
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Subproblems

For a subset of vertices S ⊆ {1, . . . , n}
containing the vertex 1 and a vertex
i ∈ S , let C (S , i) be the length of the
shortest path that starts at 1, ends at i
and visits all vertices from S exactly
once

C ({1}, 1) = 0 and C (S , 1) = +∞ when
|S | > 1
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Recurrence Relation
Consider the second-to-last vertex j on
the required shortest path from 1 to i

visiting all vertices from S

The subpath from 1 to j is the shortest
one visiting all vertices from S − {i}
exactly once
Hence
C (S , i) = min{C (S − {i}, j) + dji},
where the minimum is over all j ∈ S

such that j ̸= i



Recurrence Relation
Consider the second-to-last vertex j on
the required shortest path from 1 to i

visiting all vertices from S

The subpath from 1 to j is the shortest
one visiting all vertices from S − {i}
exactly once

Hence
C (S , i) = min{C (S − {i}, j) + dji},
where the minimum is over all j ∈ S

such that j ̸= i



Recurrence Relation
Consider the second-to-last vertex j on
the required shortest path from 1 to i

visiting all vertices from S

The subpath from 1 to j is the shortest
one visiting all vertices from S − {i}
exactly once
Hence
C (S , i) = min{C (S − {i}, j) + dji},
where the minimum is over all j ∈ S

such that j ̸= i



Order of Subproblems

Need to process all subsets
S ⊆ {1, . . . , n} in an order that
guarantees that when computing the
value of C (S , i), the values of
C (S − {i}, j) have already been
computed

For example, we can process subsets in
order of increasing size
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TSP(G )
C ({1}, 1)← 0

for s from 2 to n:
for all 1 ∈ S ⊆ {1, . . . , n} of size s:

C (S , 1)← +∞
for all i ∈ S, i ̸= 1:

for all j ∈ S, j ̸= i:
C (S , i)← min{C (S , i),C (S−{i}, j)+dji}

return mini{C ({1, . . . , n}, i) + di ,1}
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Implementation Remark
How to iterate through all subsets of
{1, . . . , n}?

There is a natural one-to-one
correspondence between integers in the
range from 0 and 2n − 1 and subsets of
{0, . . . , n − 1}:

k ↔ {i : i -th bit of k is 1}
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Example

k bin(k) {i : i -th bit of k is 1}

0 000 ∅
1 001 {0}
2 010 {1}
3 011 {0,1}
4 100 {2}
5 101 {0,2}
6 110 {1,2}
7 111 {0,1,2}



If k corresponds to S , how to find out
the integer corresponding to S − {j}
(for j ∈ S)?

For this, we need to flip the j-th bit of k
(from 1 to 0)
For this, in turn, we compute a bitwise
XOR of k and 2j (that has 1 only in j-th
position)
In C/C++, Java, Python:
k ^ (1 < < j)
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1 3-Satisfiability
Backtracking
Local Search

2 Traveling Salesman Problem
Dynamic Programming
Branch-and-bound



The branch-and-bound technique can be
viewed as a generalization of
backtracking for optimization problems

We grow a tree of partial solutions
At each node of the recursion tree we
check whether the current partial
solution can be extended to a solution
which is better than the best solution
found so far
If not, we don’t continue this branch
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1

2 3 4

3 4 2 4 2 3

4 3 4 2 3 2

119 1 7 118 1 7 118 1 19
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We used the simplest possible lower
bound: any extension of a path has
length at least the length of the path

Modern TSP-solvers use smarter lower
bounds to solve instances with
thousands of vertices
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Example: lower bounds (still simple)
The length of an optimal TSP cycle is at least
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∑︀
v∈V (two min length edges adjacent to v)

the length of a minimum spanning tree



Example: lower bounds (still simple)
The length of an optimal TSP cycle is at least

1
2

∑︀
v∈V (two min length edges adjacent to v)

the length of a minimum spanning tree



Next time
Approximation algorithms: polynomial
algorithms that find a solution that is not
much worse than an optimal solution
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