
Coping with
NP-completeness:
Exact Algorithms

Alexander S. Kulikov
Steklov Institute of Mathematics at St. Petersburg

Russian Academy of Sciences

Advanced Algorithms and Complexity
Data Structures and Algorithms

https://www.coursera.org/learn/advanced-algorithms-and-complexity
https://goo.gl/KAfKJT

Exact algorithms or intelligent exhaustive
search: finding an optimal solution without
going through all candidate solutions

Outline

1 3-Satisfiability
Backtracking
Local Search

2 Traveling Salesman Problem
Dynamic Programming
Branch-and-bound

3-Satisfiability (3-SAT)

Input: A set of clauses, each containing at
most three literals (that is, a
3-CNF formula).

Output: Find a satisfying assignment
(if exists).

Examples

The formula

(x ∨ y ∨ z)(x ∨ y)(y ∨ z)

is satisfiable: set x = y = z = 1 or
x = 1, y = z = 0.
The formula

(x∨y ∨z)(x∨y)(y ∨z)(z∨x)(x∨y ∨z)

is unsatisfiable.

A brute force search algorithm checking
satisfiability of a 3-CNF formula F with n

variables, goes through all assignments and
has running time O(|F | · 2n).

Goal
Avoid going through all 2n assignments

A brute force search algorithm checking
satisfiability of a 3-CNF formula F with n

variables, goes through all assignments and
has running time O(|F | · 2n).

Goal
Avoid going through all 2n assignments

Outline

1 3-Satisfiability
Backtracking
Local Search

2 Traveling Salesman Problem
Dynamic Programming
Branch-and-bound

Main Idea of Backtracking

Construct a solution piece by piece

Backtrack if the current partial solution
cannot be extended to a valid solution

Main Idea of Backtracking

Construct a solution piece by piece
Backtrack if the current partial solution
cannot be extended to a valid solution

Example

(x1 ∨ x2 ∨ x3 ∨ x4)(x1)(x1 ∨ x2 ∨ x3)(x1 ∨ x2)(x2 ∨ x4)

Example

(x1 ∨ x2 ∨ x3 ∨ x4)(x1)(x1 ∨ x2 ∨ x3)(x1 ∨ x2)(x2 ∨ x4)

(x2 ∨ x3 ∨ x4)(x2 ∨ x3)(x2)(x2 ∨ x4)

x1 = 0

Example

(x1 ∨ x2 ∨ x3 ∨ x4)(x1)(x1 ∨ x2 ∨ x3)(x1 ∨ x2)(x2 ∨ x4)

(x2 ∨ x3 ∨ x4)(x2 ∨ x3)(x2)(x2 ∨ x4)

x1 = 0

(x3 ∨ x4)(x3)(x4)

x2 = 0

Example

(x1 ∨ x2 ∨ x3 ∨ x4)(x1)(x1 ∨ x2 ∨ x3)(x1 ∨ x2)(x2 ∨ x4)

(x2 ∨ x3 ∨ x4)(x2 ∨ x3)(x2)(x2 ∨ x4)

x1 = 0

(x3 ∨ x4)(x3)(x4)

x2 = 0

(x4)(x4)

x3 = 0

Example

(x1 ∨ x2 ∨ x3 ∨ x4)(x1)(x1 ∨ x2 ∨ x3)(x1 ∨ x2)(x2 ∨ x4)

(x2 ∨ x3 ∨ x4)(x2 ∨ x3)(x2)(x2 ∨ x4)

x1 = 0

(x3 ∨ x4)(x3)(x4)

x2 = 0

(x4)(x4)

x3 = 0

()

x4 = 0

Example

(x1 ∨ x2 ∨ x3 ∨ x4)(x1)(x1 ∨ x2 ∨ x3)(x1 ∨ x2)(x2 ∨ x4)

(x2 ∨ x3 ∨ x4)(x2 ∨ x3)(x2)(x2 ∨ x4)

x1 = 0

(x3 ∨ x4)(x3)(x4)

x2 = 0

(x4)(x4)

x3 = 0

()

x4 = 0

()

x4 = 1

Example

(x1 ∨ x2 ∨ x3 ∨ x4)(x1)(x1 ∨ x2 ∨ x3)(x1 ∨ x2)(x2 ∨ x4)

(x2 ∨ x3 ∨ x4)(x2 ∨ x3)(x2)(x2 ∨ x4)

x1 = 0

(x3 ∨ x4)(x3)(x4)

x2 = 0

(x4)(x4)

x3 = 0

()

x4 = 0

()

x4 = 1

()(x4)

x3 = 1

Example

(x1 ∨ x2 ∨ x3 ∨ x4)(x1)(x1 ∨ x2 ∨ x3)(x1 ∨ x2)(x2 ∨ x4)

(x2 ∨ x3 ∨ x4)(x2 ∨ x3)(x2)(x2 ∨ x4)

x1 = 0

(x3 ∨ x4)(x3)(x4)

x2 = 0

(x4)(x4)

x3 = 0

()

x4 = 0

()

x4 = 1

()(x4)

x3 = 1

()

x2 = 1

Example

(x1 ∨ x2 ∨ x3 ∨ x4)(x1)(x1 ∨ x2 ∨ x3)(x1 ∨ x2)(x2 ∨ x4)

(x2 ∨ x3 ∨ x4)(x2 ∨ x3)(x2)(x2 ∨ x4)

x1 = 0

(x3 ∨ x4)(x3)(x4)

x2 = 0

(x4)(x4)

x3 = 0

()

x4 = 0

()

x4 = 1

()(x4)

x3 = 1

()

x2 = 1

()(x2 ∨ x4)

x1 = 1

SolveSAT(F)

if F has no clauses:
return “sat”

if F contains an empty clause:
return “unsat”

x ← unassigned variable of F

if SolveSAT(F [x ← 0]) = “sat”:
return “sat”

if SolveSAT(F [x ← 1]) = “sat”:
return “sat”

return “unsat”

SolveSAT(F)

if F has no clauses:
return “sat”

if F contains an empty clause:
return “unsat”

x ← unassigned variable of F

if SolveSAT(F [x ← 0]) = “sat”:
return “sat”

if SolveSAT(F [x ← 1]) = “sat”:
return “sat”

return “unsat”

SolveSAT(F)

if F has no clauses:
return “sat”

if F contains an empty clause:
return “unsat”

x ← unassigned variable of F

if SolveSAT(F [x ← 0]) = “sat”:
return “sat”

if SolveSAT(F [x ← 1]) = “sat”:
return “sat”

return “unsat”

SolveSAT(F)

if F has no clauses:
return “sat”

if F contains an empty clause:
return “unsat”

x ← unassigned variable of F

if SolveSAT(F [x ← 0]) = “sat”:
return “sat”

if SolveSAT(F [x ← 1]) = “sat”:
return “sat”

return “unsat”

SolveSAT(F)

if F has no clauses:
return “sat”

if F contains an empty clause:
return “unsat”

x ← unassigned variable of F

if SolveSAT(F [x ← 0]) = “sat”:
return “sat”

if SolveSAT(F [x ← 1]) = “sat”:
return “sat”

return “unsat”

SolveSAT(F)

if F has no clauses:
return “sat”

if F contains an empty clause:
return “unsat”

x ← unassigned variable of F

if SolveSAT(F [x ← 0]) = “sat”:
return “sat”

if SolveSAT(F [x ← 1]) = “sat”:
return “sat”

return “unsat”

Thus, instead of considering all 2n

branches of the recursion tree, we track
carefully each branch

When we realize that a branch is dead
(cannot be extended to a solution),
we immediately cut it

Thus, instead of considering all 2n

branches of the recursion tree, we track
carefully each branch
When we realize that a branch is dead
(cannot be extended to a solution),
we immediately cut it

Backtracking is used in many
state-of-the-art SAT-solvers

SAT-solvers use tricky heuristics to
choose a variable to branch on and to
simplify a formula before branching
Another commonly used technique is
local search — will consider it in the
next part

Backtracking is used in many
state-of-the-art SAT-solvers
SAT-solvers use tricky heuristics to
choose a variable to branch on and to
simplify a formula before branching

Another commonly used technique is
local search — will consider it in the
next part

Backtracking is used in many
state-of-the-art SAT-solvers
SAT-solvers use tricky heuristics to
choose a variable to branch on and to
simplify a formula before branching
Another commonly used technique is
local search — will consider it in the
next part

Outline

1 3-Satisfiability
Backtracking
Local Search

2 Traveling Salesman Problem
Dynamic Programming
Branch-and-bound

Main Idea of Local Search

Start with a candidate
solution

Iteratively move from
the current candidate
to its neighbor trying
to improve the
candidate

Main Idea of Local Search

Start with a candidate
solution
Iteratively move from
the current candidate
to its neighbor trying
to improve the
candidate

Main Idea of Local Search

Start with a candidate
solution
Iteratively move from
the current candidate
to its neighbor trying
to improve the
candidate

Main Idea of Local Search

Start with a candidate
solution
Iteratively move from
the current candidate
to its neighbor trying
to improve the
candidate

Main Idea of Local Search

Start with a candidate
solution
Iteratively move from
the current candidate
to its neighbor trying
to improve the
candidate

Let F be a 3-CNF formula over variables
x1, x2, . . . , xn

A candidate solution is a truth
assignment to these variables, that is,
a vector from {0, 1}n

Let F be a 3-CNF formula over variables
x1, x2, . . . , xn

A candidate solution is a truth
assignment to these variables, that is,
a vector from {0, 1}n

Definition
Hamming distance (or just distance) between
two assignments 𝛼, 𝛽 ∈ {0, 1}n is the
number of bits where they differ:
dist(𝛼, 𝛽) = |{i : 𝛼i ̸= 𝛽i}| .

Definition
Hamming ball with center 𝛼 ∈ {0, 1}n and
radius r , denoted by ℋ(𝛼, r), is the set of all
truth assignments from {0, 1}n at distance
at most r from 𝛼.

Definition
Hamming distance (or just distance) between
two assignments 𝛼, 𝛽 ∈ {0, 1}n is the
number of bits where they differ:
dist(𝛼, 𝛽) = |{i : 𝛼i ̸= 𝛽i}| .

Definition
Hamming ball with center 𝛼 ∈ {0, 1}n and
radius r , denoted by ℋ(𝛼, r), is the set of all
truth assignments from {0, 1}n at distance
at most r from 𝛼.

Example

ℋ(1011, 0) = {1011}

ℋ(1011, 1) =
{1011, 0011, 1111, 1001, 1010}
ℋ(1011, 2) =
{1011, 0011, 1111, 1001, 1010,
0111, 0001, 0010, 1101, 1110, 1000}

Example

ℋ(1011, 0) = {1011}
ℋ(1011, 1) =
{1011, 0011, 1111, 1001, 1010}

ℋ(1011, 2) =
{1011, 0011, 1111, 1001, 1010,
0111, 0001, 0010, 1101, 1110, 1000}

Example

ℋ(1011, 0) = {1011}
ℋ(1011, 1) =
{1011, 0011, 1111, 1001, 1010}
ℋ(1011, 2) =
{1011, 0011, 1111, 1001, 1010,
0111, 0001, 0010, 1101, 1110, 1000}

Searching a Ball for a Solution

Lemma
Assume that ℋ(𝛼, r) contains a satisfying
assignment 𝛽 for F . We can then find a
(possibly different) satisfying assignment in
time O(|F | · 3r).

Proof
If 𝛼 satisfies F , return 𝛼

Otherwise, take an unsatisfied clause — say,
(xi ∨ x j ∨ xk)

𝛼 assigns xi = 0, xj = 1, xk = 0

Let 𝛼i , 𝛼j , 𝛼k be assignments resulting from 𝛼
by flipping the i -th, j-th, k-th bit, respectively

Crucial observation: at least one of them is
closer to 𝛽 than 𝛼

Hence there are at most 3r recursive calls

Proof
If 𝛼 satisfies F , return 𝛼

Otherwise, take an unsatisfied clause — say,
(xi ∨ x j ∨ xk)

𝛼 assigns xi = 0, xj = 1, xk = 0

Let 𝛼i , 𝛼j , 𝛼k be assignments resulting from 𝛼
by flipping the i -th, j-th, k-th bit, respectively

Crucial observation: at least one of them is
closer to 𝛽 than 𝛼

Hence there are at most 3r recursive calls

Proof
If 𝛼 satisfies F , return 𝛼

Otherwise, take an unsatisfied clause — say,
(xi ∨ x j ∨ xk)

𝛼 assigns xi = 0, xj = 1, xk = 0

Let 𝛼i , 𝛼j , 𝛼k be assignments resulting from 𝛼
by flipping the i -th, j-th, k-th bit, respectively

Crucial observation: at least one of them is
closer to 𝛽 than 𝛼

Hence there are at most 3r recursive calls

Proof
If 𝛼 satisfies F , return 𝛼

Otherwise, take an unsatisfied clause — say,
(xi ∨ x j ∨ xk)

𝛼 assigns xi = 0, xj = 1, xk = 0

Let 𝛼i , 𝛼j , 𝛼k be assignments resulting from 𝛼
by flipping the i -th, j-th, k-th bit, respectively

Crucial observation: at least one of them is
closer to 𝛽 than 𝛼

Hence there are at most 3r recursive calls

Proof
If 𝛼 satisfies F , return 𝛼

Otherwise, take an unsatisfied clause — say,
(xi ∨ x j ∨ xk)

𝛼 assigns xi = 0, xj = 1, xk = 0

Let 𝛼i , 𝛼j , 𝛼k be assignments resulting from 𝛼
by flipping the i -th, j-th, k-th bit, respectively

Crucial observation: at least one of them is
closer to 𝛽 than 𝛼

Hence there are at most 3r recursive calls

Proof
If 𝛼 satisfies F , return 𝛼

Otherwise, take an unsatisfied clause — say,
(xi ∨ x j ∨ xk)

𝛼 assigns xi = 0, xj = 1, xk = 0

Let 𝛼i , 𝛼j , 𝛼k be assignments resulting from 𝛼
by flipping the i -th, j-th, k-th bit, respectively

Crucial observation: at least one of them is
closer to 𝛽 than 𝛼

Hence there are at most 3r recursive calls

𝛼

𝛽

𝛼

𝛽

𝛼

𝛽

𝛼

𝛽

CheckBall(F , 𝛼, r)
if 𝛼 satisfies F:

return 𝛼

if r = 0:
return “not found”

xi , xj , xk ← variables of unsatisfied clause
𝛼i , 𝛼j , 𝛼k ← 𝛼 with bits i , j , k flipped
CheckBall(F , 𝛼i , r − 1)
CheckBall(F , 𝛼j , r − 1)
CheckBall(F , 𝛼k , r − 1)
if a satisfying assignment is found:

return it
else:

return “not found”

CheckBall(F , 𝛼, r)
if 𝛼 satisfies F:

return 𝛼
if r = 0:

return “not found”

xi , xj , xk ← variables of unsatisfied clause
𝛼i , 𝛼j , 𝛼k ← 𝛼 with bits i , j , k flipped
CheckBall(F , 𝛼i , r − 1)
CheckBall(F , 𝛼j , r − 1)
CheckBall(F , 𝛼k , r − 1)
if a satisfying assignment is found:

return it
else:

return “not found”

CheckBall(F , 𝛼, r)
if 𝛼 satisfies F:

return 𝛼
if r = 0:

return “not found”
xi , xj , xk ← variables of unsatisfied clause
𝛼i , 𝛼j , 𝛼k ← 𝛼 with bits i , j , k flipped

CheckBall(F , 𝛼i , r − 1)
CheckBall(F , 𝛼j , r − 1)
CheckBall(F , 𝛼k , r − 1)
if a satisfying assignment is found:

return it
else:

return “not found”

CheckBall(F , 𝛼, r)
if 𝛼 satisfies F:

return 𝛼
if r = 0:

return “not found”
xi , xj , xk ← variables of unsatisfied clause
𝛼i , 𝛼j , 𝛼k ← 𝛼 with bits i , j , k flipped
CheckBall(F , 𝛼i , r − 1)
CheckBall(F , 𝛼j , r − 1)
CheckBall(F , 𝛼k , r − 1)

if a satisfying assignment is found:
return it

else:
return “not found”

CheckBall(F , 𝛼, r)
if 𝛼 satisfies F:

return 𝛼
if r = 0:

return “not found”
xi , xj , xk ← variables of unsatisfied clause
𝛼i , 𝛼j , 𝛼k ← 𝛼 with bits i , j , k flipped
CheckBall(F , 𝛼i , r − 1)
CheckBall(F , 𝛼j , r − 1)
CheckBall(F , 𝛼k , r − 1)
if a satisfying assignment is found:

return it
else:

return “not found”

Assume that F has a satisfying
assignment 𝛽

If it has more 1’s than 0’s then it has
distance at most n/2 from all-1’s
assignment
Otherwise it has distance at most n/2
from all-0’s assignment
Thus, it suffices to make two calls:
CheckBall(F , 11 . . . 1, n/2) and
CheckBall(F , 00 . . . 0, n/2)

Assume that F has a satisfying
assignment 𝛽
If it has more 1’s than 0’s then it has
distance at most n/2 from all-1’s
assignment

Otherwise it has distance at most n/2
from all-0’s assignment
Thus, it suffices to make two calls:
CheckBall(F , 11 . . . 1, n/2) and
CheckBall(F , 00 . . . 0, n/2)

Assume that F has a satisfying
assignment 𝛽
If it has more 1’s than 0’s then it has
distance at most n/2 from all-1’s
assignment
Otherwise it has distance at most n/2
from all-0’s assignment

Thus, it suffices to make two calls:
CheckBall(F , 11 . . . 1, n/2) and
CheckBall(F , 00 . . . 0, n/2)

Assume that F has a satisfying
assignment 𝛽
If it has more 1’s than 0’s then it has
distance at most n/2 from all-1’s
assignment
Otherwise it has distance at most n/2
from all-0’s assignment
Thus, it suffices to make two calls:
CheckBall(F , 11 . . . 1, n/2) and
CheckBall(F , 00 . . . 0, n/2)

Running Time

The running time of the resulting
algorithm is
O(|F | · 3n/2) ≈ O(|F | · 1.733n)

On one hand, this is still exponential
On the other hand, it is exponentially
faster than a brute force search
algorithm that goes through all 2n truth
assignments!

Running Time

The running time of the resulting
algorithm is
O(|F | · 3n/2) ≈ O(|F | · 1.733n)
On one hand, this is still exponential

On the other hand, it is exponentially
faster than a brute force search
algorithm that goes through all 2n truth
assignments!

Running Time

The running time of the resulting
algorithm is
O(|F | · 3n/2) ≈ O(|F | · 1.733n)
On one hand, this is still exponential
On the other hand, it is exponentially
faster than a brute force search
algorithm that goes through all 2n truth
assignments!

Outline

1 3-Satisfiability
Backtracking
Local Search

2 Traveling Salesman Problem
Dynamic Programming
Branch-and-bound

Traveling salesman problem (TSP)

Input: A complete graph with weights on
edges and a budget b.

Output: A cycle that visits each vertex
exactly once and has total weight
at most b.

It will be convenient to assume that vertices
are integers from 1 to n and that the
salesman starts his trip in (and also returns
back to) vertex 1.

Traveling salesman problem (TSP)

Input: A complete graph with weights on
edges and a budget b.

Output: A cycle that visits each vertex
exactly once and has total weight
at most b.

It will be convenient to assume that vertices
are integers from 1 to n and that the
salesman starts his trip in (and also returns
back to) vertex 1.

Example

1

2

5

3

4

5

2

4

2

2

1

13

3
3

Example

1

2

5

3

4

5

2

4

2

2

1

13

3
3

length: 15

Example

1

2

5

3

4

5

2

4

2

2

1

13

3
3

length: 11

Example

1

2

5

3

4

5

2

4

2

2

1

13

3
3

length: 9

Brute Force Solution
A naive algorithm just checks all possible
(n − 1)! cycles.

This part

Use dynamic programming to solve TSP
in O(n2 · 2n)
The running time is exponential, but is
much better than (n − 1)!.

Brute Force Solution
A naive algorithm just checks all possible
(n − 1)! cycles.

This part

Use dynamic programming to solve TSP
in O(n2 · 2n)

The running time is exponential, but is
much better than (n − 1)!.

Brute Force Solution
A naive algorithm just checks all possible
(n − 1)! cycles.

This part

Use dynamic programming to solve TSP
in O(n2 · 2n)
The running time is exponential, but is
much better than (n − 1)!.

Outline

1 3-Satisfiability
Backtracking
Local Search

2 Traveling Salesman Problem
Dynamic Programming
Branch-and-bound

Dynamic Programming
We are going to use dynamic
programming: instead of solving one
problem we will solve a collection of
(overlapping) subproblems

A subproblem refers to a partial solution
A reasonable partial solution in case of
TSP is the initial part of a cycle
To continue building a cycle, we need to
know the last vertex as well as the set of
already visited vertices

Dynamic Programming
We are going to use dynamic
programming: instead of solving one
problem we will solve a collection of
(overlapping) subproblems
A subproblem refers to a partial solution

A reasonable partial solution in case of
TSP is the initial part of a cycle
To continue building a cycle, we need to
know the last vertex as well as the set of
already visited vertices

Dynamic Programming
We are going to use dynamic
programming: instead of solving one
problem we will solve a collection of
(overlapping) subproblems
A subproblem refers to a partial solution
A reasonable partial solution in case of
TSP is the initial part of a cycle

To continue building a cycle, we need to
know the last vertex as well as the set of
already visited vertices

Dynamic Programming
We are going to use dynamic
programming: instead of solving one
problem we will solve a collection of
(overlapping) subproblems
A subproblem refers to a partial solution
A reasonable partial solution in case of
TSP is the initial part of a cycle
To continue building a cycle, we need to
know the last vertex as well as the set of
already visited vertices

Subproblems

For a subset of vertices S ⊆ {1, . . . , n}
containing the vertex 1 and a vertex
i ∈ S , let C (S , i) be the length of the
shortest path that starts at 1, ends at i
and visits all vertices from S exactly
once

C ({1}, 1) = 0 and C (S , 1) = +∞ when
|S | > 1

Subproblems

For a subset of vertices S ⊆ {1, . . . , n}
containing the vertex 1 and a vertex
i ∈ S , let C (S , i) be the length of the
shortest path that starts at 1, ends at i
and visits all vertices from S exactly
once
C ({1}, 1) = 0 and C (S , 1) = +∞ when
|S | > 1

Recurrence Relation
Consider the second-to-last vertex j on
the required shortest path from 1 to i

visiting all vertices from S

The subpath from 1 to j is the shortest
one visiting all vertices from S − {i}
exactly once
Hence
C (S , i) = min{C (S − {i}, j) + dji},
where the minimum is over all j ∈ S

such that j ̸= i

Recurrence Relation
Consider the second-to-last vertex j on
the required shortest path from 1 to i

visiting all vertices from S

The subpath from 1 to j is the shortest
one visiting all vertices from S − {i}
exactly once

Hence
C (S , i) = min{C (S − {i}, j) + dji},
where the minimum is over all j ∈ S

such that j ̸= i

Recurrence Relation
Consider the second-to-last vertex j on
the required shortest path from 1 to i

visiting all vertices from S

The subpath from 1 to j is the shortest
one visiting all vertices from S − {i}
exactly once
Hence
C (S , i) = min{C (S − {i}, j) + dji},
where the minimum is over all j ∈ S

such that j ̸= i

Order of Subproblems

Need to process all subsets
S ⊆ {1, . . . , n} in an order that
guarantees that when computing the
value of C (S , i), the values of
C (S − {i}, j) have already been
computed

For example, we can process subsets in
order of increasing size

Order of Subproblems

Need to process all subsets
S ⊆ {1, . . . , n} in an order that
guarantees that when computing the
value of C (S , i), the values of
C (S − {i}, j) have already been
computed
For example, we can process subsets in
order of increasing size

TSP(G)
C ({1}, 1)← 0

for s from 2 to n:
for all 1 ∈ S ⊆ {1, . . . , n} of size s:

C (S , 1)← +∞
for all i ∈ S, i ̸= 1:

for all j ∈ S, j ̸= i:
C (S , i)← min{C (S , i),C (S−{i}, j)+dji}

return mini{C ({1, . . . , n}, i) + di ,1}

TSP(G)
C ({1}, 1)← 0
for s from 2 to n:

for all 1 ∈ S ⊆ {1, . . . , n} of size s:
C (S , 1)← +∞

for all i ∈ S, i ̸= 1:
for all j ∈ S, j ̸= i:

C (S , i)← min{C (S , i),C (S−{i}, j)+dji}
return mini{C ({1, . . . , n}, i) + di ,1}

TSP(G)
C ({1}, 1)← 0
for s from 2 to n:

for all 1 ∈ S ⊆ {1, . . . , n} of size s:
C (S , 1)← +∞
for all i ∈ S, i ̸= 1:

for all j ∈ S, j ̸= i:
C (S , i)← min{C (S , i),C (S−{i}, j)+dji}

return mini{C ({1, . . . , n}, i) + di ,1}

TSP(G)
C ({1}, 1)← 0
for s from 2 to n:

for all 1 ∈ S ⊆ {1, . . . , n} of size s:
C (S , 1)← +∞
for all i ∈ S, i ̸= 1:

for all j ∈ S, j ̸= i:
C (S , i)← min{C (S , i),C (S−{i}, j)+dji}

return mini{C ({1, . . . , n}, i) + di ,1}

Implementation Remark
How to iterate through all subsets of
{1, . . . , n}?

There is a natural one-to-one
correspondence between integers in the
range from 0 and 2n − 1 and subsets of
{0, . . . , n − 1}:

k ↔ {i : i -th bit of k is 1}

Implementation Remark
How to iterate through all subsets of
{1, . . . , n}?
There is a natural one-to-one
correspondence between integers in the
range from 0 and 2n − 1 and subsets of
{0, . . . , n − 1}:

k ↔ {i : i -th bit of k is 1}

Example

k bin(k) {i : i -th bit of k is 1}

0 000 ∅
1 001 {0}
2 010 {1}
3 011 {0,1}
4 100 {2}
5 101 {0,2}
6 110 {1,2}
7 111 {0,1,2}

If k corresponds to S , how to find out
the integer corresponding to S − {j}
(for j ∈ S)?

For this, we need to flip the j-th bit of k
(from 1 to 0)
For this, in turn, we compute a bitwise
XOR of k and 2j (that has 1 only in j-th
position)
In C/C++, Java, Python:
k ^ (1 < < j)

If k corresponds to S , how to find out
the integer corresponding to S − {j}
(for j ∈ S)?
For this, we need to flip the j-th bit of k
(from 1 to 0)

For this, in turn, we compute a bitwise
XOR of k and 2j (that has 1 only in j-th
position)
In C/C++, Java, Python:
k ^ (1 < < j)

If k corresponds to S , how to find out
the integer corresponding to S − {j}
(for j ∈ S)?
For this, we need to flip the j-th bit of k
(from 1 to 0)
For this, in turn, we compute a bitwise
XOR of k and 2j (that has 1 only in j-th
position)

In C/C++, Java, Python:
k ^ (1 < < j)

If k corresponds to S , how to find out
the integer corresponding to S − {j}
(for j ∈ S)?
For this, we need to flip the j-th bit of k
(from 1 to 0)
For this, in turn, we compute a bitwise
XOR of k and 2j (that has 1 only in j-th
position)
In C/C++, Java, Python:
k ^ (1 < < j)

Outline

1 3-Satisfiability
Backtracking
Local Search

2 Traveling Salesman Problem
Dynamic Programming
Branch-and-bound

The branch-and-bound technique can be
viewed as a generalization of
backtracking for optimization problems

We grow a tree of partial solutions
At each node of the recursion tree we
check whether the current partial
solution can be extended to a solution
which is better than the best solution
found so far
If not, we don’t continue this branch

The branch-and-bound technique can be
viewed as a generalization of
backtracking for optimization problems
We grow a tree of partial solutions

At each node of the recursion tree we
check whether the current partial
solution can be extended to a solution
which is better than the best solution
found so far
If not, we don’t continue this branch

The branch-and-bound technique can be
viewed as a generalization of
backtracking for optimization problems
We grow a tree of partial solutions
At each node of the recursion tree we
check whether the current partial
solution can be extended to a solution
which is better than the best solution
found so far

If not, we don’t continue this branch

The branch-and-bound technique can be
viewed as a generalization of
backtracking for optimization problems
We grow a tree of partial solutions
At each node of the recursion tree we
check whether the current partial
solution can be extended to a solution
which is better than the best solution
found so far
If not, we don’t continue this branch

Example: brute force search

1

4

2

3

1

5

3

10 1 2

Example: brute force search

1

4

2

3

1

5

3

10 1 2

1

2 3 4

3 4 2 4 2 3

4 3 4 2 3 2

119 1 7 118 1 7 118 1 19

Example: pruned search

1

4

2

3

1

5

3

10 1 2

Example: pruned search

1

4

2

3

1

5

3

10 1 2

1
0

21

Example: pruned search

1

4

2

3

1

5

3

10 1 2

1
0

21

36

Example: pruned search

1

4

2

3

1

5

3

10 1 2

1
0

21

36

49

Example: pruned search

1

4

2

3

1

5

3

10 1 2

best so far: 19

1
0

21

36

49

119

Example: pruned search

1

4

2

3

1

5

3

10 1 2

best so far: 19

1
0

21

36

49

119

4 3

Example: pruned search

1

4

2

3

1

5

3

10 1 2

best so far: 19

1
0

21

36

49

119

4 3

3 6

Example: pruned search

1

4

2

3

1

5

3

10 1 2

best so far: 7

1
0

21

36

49

119

4 3

3 6

1 7

Example: pruned search

1

4

2

3

1

5

3

10 1 2

best so far: 7

1
0

21

36

49

119

4 3

3 6

1 7

31

Example: pruned search

1

4

2

3

1

5

3

10 1 2

best so far: 7

1
0

21

36

49

119

4 3

3 6

1 7

31

26

Example: pruned search

1

4

2

3

1

5

3

10 1 2

best so far: 7

1
0

21

36

49

119

4 3

3 6

1 7

31

26

48

Example: pruned search

1

4

2

3

1

5

3

10 1 2

best so far: 7

1
0

21

36

49

119

4 3

3 6

1 7

31

26

48

4 4

Example: pruned search

1

4

2

3

1

5

3

10 1 2

best so far: 7

1
0

21

36

49

119

4 3

3 6

1 7

31

26

48

4 4

2 6

Example: pruned search

1

4

2

3

1

5

3

10 1 2

best so far: 7

1
0

21

36

49

119

4 3

3 6

1 7

31

26

48

4 4

2 6

1 7

Example: pruned search

1

4

2

3

1

5

3

10 1 2

best so far: 7

1
0

21

36

49

119

4 3

3 6

1 7

31

26

48

4 4

2 6

1 7

410

We used the simplest possible lower
bound: any extension of a path has
length at least the length of the path

Modern TSP-solvers use smarter lower
bounds to solve instances with
thousands of vertices

We used the simplest possible lower
bound: any extension of a path has
length at least the length of the path
Modern TSP-solvers use smarter lower
bounds to solve instances with
thousands of vertices

Example: lower bounds (still simple)
The length of an optimal TSP cycle is at least

1
2

∑︀
v∈V (two min length edges adjacent to v)

the length of a minimum spanning tree

Example: lower bounds (still simple)
The length of an optimal TSP cycle is at least

1
2

∑︀
v∈V (two min length edges adjacent to v)

the length of a minimum spanning tree

Next time
Approximation algorithms: polynomial
algorithms that find a solution that is not
much worse than an optimal solution

	3-Satisfiability
	Backtracking
	Local Search

	Traveling Salesman Problem
	Dynamic Programming
	Branch-and-bound

