Coping with NP-completeness: Exact Algorithms

Alexander S. Kulikov

Steklov Institute of Mathematics at St. Petersburg Russian Academy of Sciences

Advanced Algorithms and Complexity Data Structures and Algorithms

Exact algorithms or intelligent exhaustive search: finding an optimal solution without going through all candidate solutions

Outline

(1) 3-Satisfiability

Backtracking
Local Search
(2) Traveling Salesman Problem

Dynamic Programming
Branch-and-bound

3-Satisfiability (3-SAT)

Input: A set of clauses, each containing at most three literals (that is, a 3-CNF formula).
Output: Find a satisfying assignment (if exists).

Examples

- The formula

$$
(x \vee y \vee z)(x \vee \bar{y})(y \vee \bar{z})
$$

is satisfiable: set $x=y=z=1$ or
$x=1, y=z=0$.

- The formula
$(x \vee y \vee z)(x \vee \bar{y})(y \vee \bar{z})(z \vee \bar{x})(\bar{x} \vee \bar{y} \vee \bar{z})$
is unsatisfiable.

A brute force search algorithm checking satisfiability of a 3-CNF formula F with n variables, goes through all assignments and has running time $O\left(|F| \cdot 2^{n}\right)$.

A brute force search algorithm checking satisfiability of a 3-CNF formula F with n variables, goes through all assignments and has running time $O\left(|F| \cdot 2^{n}\right)$.

Goal

Avoid going through all 2^{n} assignments

Outline

(1) 3-Satisfiability

Backtracking
Local Search
(2) Traveling Salesman Problem

Dynamic Programming
Branch-and-bound

Main Idea of Backtracking

- Construct a solution piece by piece

Main Idea of Backtracking

- Construct a solution piece by piece
- Backtrack if the current partial solution cannot be extended to a valid solution

Example

$$
\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right)\left(\bar{x}_{1}\right)\left(x_{1} \vee x_{2} \vee \bar{x}_{3}\right)\left(x_{1} \vee \bar{x}_{2}\right)\left(x_{2} \vee \bar{x}_{4}\right)
$$

Example

SolveSAT(F)

if F has no clauses: return "sat"'

SolveSAT(F)

if F has no clauses: return "sat"'
if F contains an empty clause: return "unsat’’

SolveSAT(F)

if F has no clauses: return "sat"'
if F contains an empty clause: return 'unsat"
$x \leftarrow$ unassigned variable of F

SolveSAT(F)

if F has no clauses: return "sat"'
if F contains an empty clause: return '"unsat"
$x \leftarrow$ unassigned variable of F if $\operatorname{SolveSAT}(F[x \leftarrow 0])=$ 'sat"': return 'sat"'

SolveSAT(F)

if F has no clauses: return 'sat"'
if F contains an empty clause: return '"unsat"
$x \leftarrow$ unassigned variable of F if SolveSAT $(F[x \leftarrow 0])=$ 'sat"': return 'sat"'
if SolveSAT $(F[x \leftarrow 1])=$ 'sat"' return 'sat"'

SolveSAT(F)

if F has no clauses: return 'sat"'
if F contains an empty clause: return '"unsat"
$x \leftarrow$ unassigned variable of F if SolveSAT $(F[x \leftarrow 0])=$ 'sat"': return 'sat"'
if SolveSAT $(F[x \leftarrow 1])=$ 'sat" $:$ return "sat"'
return '"unsat"'

- Thus, instead of considering all 2^{n} branches of the recursion tree, we track carefully each branch
- Thus, instead of considering all 2^{n} branches of the recursion tree, we track carefully each branch
- When we realize that a branch is dead (cannot be extended to a solution), we immediately cut it
- Backtracking is used in many state-of-the-art SAT-solvers
- Backtracking is used in many state-of-the-art SAT-solvers
■ SAT-solvers use tricky heuristics to choose a variable to branch on and to simplify a formula before branching
- Backtracking is used in many state-of-the-art SAT-solvers
■ SAT-solvers use tricky heuristics to choose a variable to branch on and to simplify a formula before branching
- Another commonly used technique is local search - will consider it in the next part

Outline

(1) 3-Satisfiability

Backtracking
Local Search
(2) Traveling Salesman Problem

Dynamic Programming
Branch-and-bound

Main Idea of Local Search

- Start with a candidate solution

Main Idea of Local Search

- Start with a candidate solution
- Iteratively move from the current candidate to its neighbor trying to improve the candidate

Main Idea of Local Search

- Start with a candidate solution
- Iteratively move from the current candidate to its neighbor trying to improve the candidate

Main Idea of Local Search

- Start with a candidate solution
- Iteratively move from the current candidate to its neighbor trying to improve the candidate

Main Idea of Local Search

- Start with a candidate solution
- Iteratively move from the current candidate to its neighbor trying to improve the candidate

- Let F be a 3-CNF formula over variables

$$
x_{1}, x_{2}, \ldots, x_{n}
$$

■ Let F be a 3-CNF formula over variables $x_{1}, x_{2}, \ldots, x_{n}$

- A candidate solution is a truth assignment to these variables, that is, a vector from $\{0,1\}^{n}$

Definition

Hamming distance (or just distance) between two assignments $\alpha, \beta \in\{0,1\}^{n}$ is the number of bits where they differ: $\operatorname{dist}(\alpha, \beta)=\left|\left\{i: \alpha_{i} \neq \beta_{i}\right\}\right|$.

Definition

Hamming distance (or just distance) between two assignments $\alpha, \beta \in\{0,1\}^{n}$ is the number of bits where they differ: $\operatorname{dist}(\alpha, \beta)=\left|\left\{i: \alpha_{i} \neq \beta_{i}\right\}\right|$.

Definition

Hamming ball with center $\alpha \in\{0,1\}^{n}$ and radius r, denoted by $\mathcal{H}(\alpha, r)$, is the set of all truth assignments from $\{0,1\}^{n}$ at distance at most r from α.

Example

- $\mathcal{H}(1011,0)=\{1011\}$

Example

- $\mathcal{H}(1011,0)=\{1011\}$
- $\mathcal{H}(1011,1)=$
\{1011, 0011, 1111, 1001, 1010\}

Example

- $\mathcal{H}(1011,0)=\{1011\}$
- $\mathcal{H}(1011,1)=$
$\{1011,0011,1111,1001,1010\}$
- $\mathcal{H}(1011,2)=$

$$
\begin{aligned}
& \{1011,0011,1111,1001,1010 \\
& 0111,0001,0010,1101,1110,1000\}
\end{aligned}
$$

Searching a Ball for a Solution

Lemma

Assume that $\mathcal{H}(\alpha, r)$ contains a satisfying assignment β for F. We can then find a (possibly different) satisfying assignment in time $O\left(|F| \cdot 3^{r}\right)$.

- If α satisfies F, return α

Proof

- If α satisfies F, return α

■ Otherwise, take an unsatisfied clause - say, $\left(x_{i} \vee \bar{x}_{j} \vee x_{k}\right)$

Proof

- If α satisfies F, return α
- Otherwise, take an unsatisfied clause - say, $\left(x_{i} \vee \bar{x}_{j} \vee x_{k}\right)$

■ α assigns $x_{i}=0, x_{j}=1, x_{k}=0$

Proof

- If α satisfies F, return α

■ Otherwise, take an unsatisfied clause - say, $\left(x_{i} \vee \bar{x}_{j} \vee x_{k}\right)$

- α assigns $x_{i}=0, x_{j}=1, x_{k}=0$
- Let $\alpha^{i}, \alpha^{j}, \alpha^{k}$ be assignments resulting from α by flipping the i-th, j-th, k-th bit, respectively

Proof

- If α satisfies F, return α
- Otherwise, take an unsatisfied clause - say, $\left(x_{i} \vee \bar{x}_{j} \vee x_{k}\right)$
- α assigns $x_{i}=0, x_{j}=1, x_{k}=0$
- Let $\alpha^{i}, \alpha^{j}, \alpha^{k}$ be assignments resulting from α by flipping the i-th, j-th, k-th bit, respectively

■ Crucial observation: at least one of them is closer to β than α

Proof

- If α satisfies F, return α
- Otherwise, take an unsatisfied clause - say, $\left(x_{i} \vee \bar{x}_{j} \vee x_{k}\right)$
- α assigns $x_{i}=0, x_{j}=1, x_{k}=0$
- Let $\alpha^{i}, \alpha^{j}, \alpha^{k}$ be assignments resulting from α by flipping the i-th, j-th, k-th bit, respectively
- Crucial observation: at least one of them is closer to β than α
- Hence there are at most 3^{r} recursive calls

CheckBall (F, α, r)
if α satisfies F :
return α

CheckBall (F, α, r)

if α satisfies F :
return α
if $r=0$:
return 'not found''

CheckBall (F, α, r)

if α satisfies F :
return α
if $r=0$:
return 'not found'"
$x_{i}, x_{j}, x_{k} \leftarrow$ variables of unsatisfied clause $\alpha^{i}, \alpha^{j}, \alpha^{k} \leftarrow \alpha$ with bits i, j, k flipped

CheckBall (F, α, r)

if α satisfies F :
return α
if $r=0$:
return 'not found'"
$x_{i}, x_{j}, x_{k} \leftarrow$ variables of unsatisfied clause $\alpha^{i}, \alpha^{j}, \alpha^{k} \leftarrow \alpha$ with bits i, j, k flipped CheckBall $\left(F, \alpha^{i}, r-1\right)$
CheckBall $\left(F, \alpha^{j}, r-1\right)$ CheckBall $\left(F, \alpha^{k}, r-1\right)$

CheckBall (F, α, r)

if α satisfies F :
return α
if $r=0$:
return 'not found''
$x_{i}, x_{j}, x_{k} \leftarrow$ variables of unsatisfied clause $\alpha^{i}, \alpha^{j}, \alpha^{k} \leftarrow \alpha$ with bits i, j, k flipped CheckBall $\left(F, \alpha^{i}, r-1\right)$
CheckBall $\left(F, \alpha^{j}, r-1\right)$
CheckBall $\left(F, \alpha^{k}, r-1\right)$
if a satisfying assignment is found: return it
else:
return 'not found''

- Assume that F has a satisfying assignment β
- Assume that F has a satisfying assignment β
- If it has more 1's than 0's then it has distance at most $n / 2$ from all-1's assignment
- Assume that F has a satisfying assignment β
- If it has more 1's than 0's then it has distance at most $n / 2$ from all-1's assignment
- Otherwise it has distance at most $n / 2$ from all-0's assignment
- Assume that F has a satisfying assignment β
- If it has more 1's than 0's then it has distance at most $n / 2$ from all-1's assignment
- Otherwise it has distance at most $n / 2$ from all-0's assignment
- Thus, it suffices to make two calls: CheckBall ($F, 11 \ldots 1, n / 2$) and CheckBall (F, 00...0, n/2)

Running Time

- The running time of the resulting algorithm is

$$
O\left(|F| \cdot 3^{n / 2}\right) \approx O\left(|F| \cdot 1.733^{n}\right)
$$

Running Time

- The running time of the resulting algorithm is
$O\left(|F| \cdot 3^{n / 2}\right) \approx O\left(|F| \cdot 1.733^{n}\right)$
■ On one hand, this is still exponential

Running Time

- The running time of the resulting algorithm is $O\left(|F| \cdot 3^{n / 2}\right) \approx O\left(|F| \cdot 1.733^{n}\right)$
■ On one hand, this is still exponential
- On the other hand, it is exponentially faster than a brute force search algorithm that goes through all 2^{n} truth assignments!

Outline

(1) 3-Satisfiability

Backtracking Local Search
(2) Traveling Salesman Problem

Dynamic Programming
Branch-and-bound

Traveling salesman problem (TSP)

Input: A complete graph with weights on edges and a budget b.
Output: A cycle that visits each vertex exactly once and has total weight at most b.

Traveling salesman problem (TSP)

Input: A complete graph with weights on edges and a budget b.
Output: A cycle that visits each vertex exactly once and has total weight at most b.

It will be convenient to assume that vertices are integers from 1 to n and that the salesman starts his trip in (and also returns back to) vertex 1 .

Example

Example

Example

Example

Brute Force Solution

A naive algorithm just checks all possible ($n-1$)! cycles.

Brute Force Solution

A naive algorithm just checks all possible ($n-1$)! cycles.

This part

- Use dynamic programming to solve TSP in $O\left(n^{2} \cdot 2^{n}\right)$

Brute Force Solution

A naive algorithm just checks all possible $(n-1)$! cycles.

This part

- Use dynamic programming to solve TSP in $O\left(n^{2} \cdot 2^{n}\right)$
- The running time is exponential, but is much better than $(n-1)$!.

Outline

(1) 3-Satisfiability Backtracking Local Search
(2) Traveling Salesman Problem

Dynamic Programming
Branch-and-bound

Dynamic Programming

■ We are going to use dynamic programming: instead of solving one problem we will solve a collection of (overlapping) subproblems

Dynamic Programming

■ We are going to use dynamic programming: instead of solving one problem we will solve a collection of (overlapping) subproblems

- A subproblem refers to a partial solution

Dynamic Programming

■ We are going to use dynamic programming: instead of solving one problem we will solve a collection of (overlapping) subproblems

- A subproblem refers to a partial solution
- A reasonable partial solution in case of TSP is the initial part of a cycle

Dynamic Programming

■ We are going to use dynamic programming: instead of solving one problem we will solve a collection of (overlapping) subproblems

- A subproblem refers to a partial solution
- A reasonable partial solution in case of TSP is the initial part of a cycle
- To continue building a cycle, we need to know the last vertex as well as the set of already visited vertices

Subproblems

- For a subset of vertices $S \subseteq\{1, \ldots, n\}$ containing the vertex 1 and a vertex $i \in S$, let $C(S, i)$ be the length of the shortest path that starts at 1 , ends at i and visits all vertices from S exactly once

Subproblems

■ For a subset of vertices $S \subseteq\{1, \ldots, n\}$ containing the vertex 1 and a vertex $i \in S$, let $C(S, i)$ be the length of the shortest path that starts at 1 , ends at i and visits all vertices from S exactly once

- $C(\{1\}, 1)=0$ and $C(S, 1)=+\infty$ when $|S|>1$

Recurrence Relation

- Consider the second-to-last vertex j on the required shortest path from 1 to i visiting all vertices from S

Recurrence Relation

- Consider the second-to-last vertex j on the required shortest path from 1 to i visiting all vertices from S
- The subpath from 1 to j is the shortest one visiting all vertices from $S-\{i\}$ exactly once

Recurrence Relation

- Consider the second-to-last vertex j on the required shortest path from 1 to i visiting all vertices from S
- The subpath from 1 to j is the shortest one visiting all vertices from $S-\{i\}$ exactly once
- Hence
$C(S, i)=\min \left\{C(S-\{i\}, j)+d_{j i}\right\}$, where the minimum is over all $j \in S$ such that $j \neq i$

Order of Subproblems

- Need to process all subsets
$S \subseteq\{1, \ldots, n\}$ in an order that guarantees that when computing the value of $C(S, i)$, the values of
$C(S-\{i\}, j)$ have already been computed

Order of Subproblems

- Need to process all subsets
$S \subseteq\{1, \ldots, n\}$ in an order that guarantees that when computing the value of $C(S, i)$, the values of
$C(S-\{i\}, j)$ have already been computed
- For example, we can process subsets in order of increasing size

TSP(G)

$C(\{1\}, 1) \leftarrow 0$

TSP (G)
$C(\{1\}, 1) \leftarrow 0$
for s from 2 to n :
for all $1 \in S \subseteq\{1, \ldots, n\}$ of size s :
$C(S, 1) \leftarrow+\infty$

TSP(G)
$C(\{1\}, 1) \leftarrow 0$
for s from 2 to n :
for all $1 \in S \subseteq\{1, \ldots, n\}$ of size s :
$C(S, 1) \leftarrow+\infty$
for all $i \in S, i \neq 1$: for all $j \in S, j \neq i$:
$C(S, i) \leftarrow \min \left\{C(S, i), C(S-\{i\}, j)+d_{j i}\right\}$

$\operatorname{TSP}(G)$

$C(\{1\}, 1) \leftarrow 0$
for s from 2 to n :
for all $1 \in S \subseteq\{1, \ldots, n\}$ of size s :
$C(S, 1) \leftarrow+\infty$
for all $i \in S, i \neq 1$: for all $j \in S, j \neq i$:
$C(S, i) \leftarrow \min \left\{C(S, i), C(S-\{i\}, j)+d_{j i}\right\}$
return $\min _{i}\left\{C(\{1, \ldots, n\}, i)+d_{i, 1}\right\}$

Implementation Remark

■ How to iterate through all subsets of $\{1, \ldots, n\}$?

Implementation Remark

■ How to iterate through all subsets of $\{1, \ldots, n\}$?

- There is a natural one-to-one correspondence between integers in the range from 0 and $2^{n}-1$ and subsets of $\{0, \ldots, n-1\}$:

$$
k \leftrightarrow\{i: i \text {-th bit of } k \text { is } 1\}
$$

Example

$k \operatorname{bin}(k)\{i: i$-th bit of k is 1$\}$

0	000	\emptyset
1	001	$\{0\}$
2	010	$\{1\}$
3	011	$\{0,1\}$
4	100	$\{2\}$
5	101	$\{0,2\}$
6	110	$\{1,2\}$
7	111	$\{0,1,2\}$

■ If k corresponds to S, how to find out the integer corresponding to $S-\{j\}$ (for $j \in S$)?

- If k corresponds to S, how to find out the integer corresponding to $S-\{j\}$ (for $j \in S$)?
- For this, we need to flip the j-th bit of k (from 1 to 0)

■ If k corresponds to S, how to find out the integer corresponding to $S-\{j\}$ (for $j \in S$)?
■ For this, we need to flip the j-th bit of k (from 1 to 0)

- For this, in turn, we compute a bitwise XOR of k and 2^{j} (that has 1 only in j-th position)

■ If k corresponds to S, how to find out the integer corresponding to $S-\{j\}$ (for $j \in S$)?
■ For this, we need to flip the j-th bit of k (from 1 to 0)

- For this, in turn, we compute a bitwise XOR of k and 2^{j} (that has 1 only in j-th position)
- In C/C++, Java, Python:
$k^{\wedge}(1 \ll j)$

Outline

(1) 3-Satisfiability Backtracking Local Search
(2) Traveling Salesman Problem

Dynamic Programming
Branch-and-bound

- The branch-and-bound technique can be viewed as a generalization of backtracking for optimization problems
- The branch-and-bound technique can be viewed as a generalization of backtracking for optimization problems ■ We grow a tree of partial solutions
- The branch-and-bound technique can be viewed as a generalization of backtracking for optimization problems
- We grow a tree of partial solutions
- At each node of the recursion tree we check whether the current partial solution can be extended to a solution which is better than the best solution found so far
- The branch-and-bound technique can be viewed as a generalization of backtracking for optimization problems
- We grow a tree of partial solutions
- At each node of the recursion tree we check whether the current partial solution can be extended to a solution which is better than the best solution found so far
- If not, we don't continue this branch

Example: brute force search

Example: brute force search

Example: pruned search

- We used the simplest possible lower bound: any extension of a path has length at least the length of the path
- We used the simplest possible lower bound: any extension of a path has length at least the length of the path
■ Modern TSP-solvers use smarter lower bounds to solve instances with thousands of vertices

Example: lower bounds (still simple)

The length of an optimal TSP cycle is at least

- $\frac{1}{2} \sum_{v \in V}$ (two min length edges adjacent to v)

Example: lower bounds (still simple)

The length of an optimal TSP cycle is at least

- $\frac{1}{2} \sum_{v \in V}($ two min length edges adjacent to v)
- the length of a minimum spanning tree

Next time
Approximation algorithms: polynomial algorithms that find a solution that is not much worse than an optimal solution

